Applications of Machine Learning and Data Mining in SpeedWise® Drilling Analytics: A Case Study

Author(s):  
Zheren Ma ◽  
Ali Karimi Vajargah ◽  
Hanna Lee ◽  
Rami Kansao ◽  
Hamed Darabi ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1615
Author(s):  
Zeeshan Ali Khan ◽  
Ubaid Abbasi ◽  
Sung Won Kim

Low power wide area networks (LPWAN) are comprised of small devices having restricted processing resources and limited energy budget. These devices are connected with each other using communication protocols. Considering their available resources, these devices can be used in a number of different Internet of Things (IoT) applications. Another interesting paradigm is machine learning, which can also be integrated with LPWAN technology to embed intelligence into these IoT applications. These machine learning-based applications combine intelligence with LPWAN and prove to be a useful tool. One such IoT application is in the medical field, where they can be used to provide multiple services. In the scenario of the COVID-19 pandemic, the importance of LPWAN-based medical services has gained particular attention. This article describes various COVID-19-related healthcare services, using the the applications of machine learning and LPWAN in improving the medical domain during the current COVID-19 pandemic. We validate our idea with the help of a case study that describes a way to reduce the spread of any pandemic using LPWAN technology and machine learning. The case study compares k-Nearest Neighbors (KNN) and trust-based algorithms for mitigating the flow of virus spread. The simulation results show the effectiveness of KNN for curtailing the COVID-19 spread.


2021 ◽  
Author(s):  
Bongs Lainjo

Abstract Background: Information technology has continued to shape contemporary thematic trends. Advances in communication have impacted almost all themes ranging from education, engineering, healthcare, and many other aspects of our daily lives. Method: This paper attempts to review the different dynamics of the thematic IoT platforms. A select number of themes are extensively analyzed with emphasis on data mining (DM), personalized healthcare (PHC), and thematic trends of a select number of subjectively identified IoT-related publications over three years. In this paper, the number of IoT-related-publications is used as a proxy representing the number of apps. DM remains the trailblazer, serving as a theme with crosscutting qualities that drive artificial intelligence (AI), machine learning (ML), and data transformation. A case study in PHC illustrates the importance, complexity, productivity optimization, and nuances contributing to a successful IoT platform. Among the initial 99 IoT themes, 18 are extensively analyzed using the number of IoT publications to demonstrate a combination of different thematic dynamics, including subtleties that influence escalating IoT publication themes. Results: Based on findings amongst the 99 themes, the annual median IoT-related publications for all the themes over the four years were increasingly 5510, 8930, 11700, and 14800 for 2016, 2017, 2018, and 2019 respectively; indicating an upbeat prognosis of IoT dynamics. Conclusion: The vulnerabilities that come with the successful implementation of IoT systems are highlighted including the successes currently achieved by institutions promoting the benefits of IoT-related systems like the case study. Security continues to be an issue of significant importance.


2014 ◽  
Vol 38 (S1) ◽  
pp. S81-S85
Author(s):  
Ake Tzu-Hui Lu ◽  
Erin Austin ◽  
Ashley Bonner ◽  
Hsin-Hsiung Huang ◽  
Rita M. Cantor

Amicus Curiae ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 338-360
Author(s):  
Jamie Grace ◽  
Roxanne Bamford

Policymaking is increasingly being informed by ‘big data’ technologies of analytics, machine learning and artificial intelligence (AI). John Rawls used particular principles of reasoning in his 1971 book, A Theory of Justice, which might help explore known problems of data bias, unfairness, accountability and privacy, in relation to applications of machine learning and AI in government. This paper will investigate how the current assortment of UK governmental policy and regulatory developments around AI in the public sector could be said to meet, or not meet, these Rawlsian principles, and what we might do better by incorporating them when we respond legislatively to this ongoing challenge. This paper uses a case study of data analytics and machine-learning regulation as the central means of this exploration of Rawlsian thinking in relation to the redevelopment of algorithmic governance.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 485 ◽  
Author(s):  
Carlos A. Palacios ◽  
José A. Reyes-Suárez ◽  
Lorena A. Bearzotti ◽  
Víctor Leiva ◽  
Carolina Marchant

Data mining is employed to extract useful information and to detect patterns from often large data sets, closely related to knowledge discovery in databases and data science. In this investigation, we formulate models based on machine learning algorithms to extract relevant information predicting student retention at various levels, using higher education data and specifying the relevant variables involved in the modeling. Then, we utilize this information to help the process of knowledge discovery. We predict student retention at each of three levels during their first, second, and third years of study, obtaining models with an accuracy that exceeds 80% in all scenarios. These models allow us to adequately predict the level when dropout occurs. Among the machine learning algorithms used in this work are: decision trees, k-nearest neighbors, logistic regression, naive Bayes, random forest, and support vector machines, of which the random forest technique performs the best. We detect that secondary educational score and the community poverty index are important predictive variables, which have not been previously reported in educational studies of this type. The dropout assessment at various levels reported here is valid for higher education institutions around the world with similar conditions to the Chilean case, where dropout rates affect the efficiency of such institutions. Having the ability to predict dropout based on student’s data enables these institutions to take preventative measures, avoiding the dropouts. In the case study, balancing the majority and minority classes improves the performance of the algorithms.


Sign in / Sign up

Export Citation Format

Share Document