Assessing Current Fracture Gradient of a High Pressure, High Temperature HP/HT Field as a Key Input for its Development and Abandonment

2019 ◽  
Author(s):  
Manoochehr Salehabadi ◽  
Indriaty Susanto ◽  
Cindy Prin ◽  
Christopher Freeman ◽  
Rebecca Laird ◽  
...  
2021 ◽  
Author(s):  
Ahmed Ghamdi ◽  
Ahmed Saihati ◽  
Mohamed Abdelrahman ◽  
Mahmoud Omar ◽  
Abdulazeez Abdulraheem

Abstract Drilling in deep high-pressure high-temperature (HPHT) abrasive sandstone pose significant challenges: low rate of penetration (ROP), bit wear, differential sticking, and wellbore instability issues. These issues are magnified when attempting to drill long laterals in the direction of minimum stress. This paper focuses on the use of Managed Pressure Drilling (MPD) and Artificial Intelligence (AI) analytics to improve ROP. MPD is normally used to help drilling in formations with narrow mud weight window, it achieves this by controlling the surface backpressure to keep the annular pressure in the wellbore above the pore pressure and below the fracture gradient. One key benefit of using MPD is that high mud weight is no longer required, since the Equivalent Circulating Density (ECD) is going to be managed to maintain the overbalance. An example of a well that was drilled using MPD solely for ROP improvement is presented in this paper. This well achieved almost double the ROP of a control well, which was drilled in the same formation with no MPD. Essentially most of the drilling parameters used, which include, pump rate, revolution per minute (RPM), weight on bit (WOB), and other drilling practices, are controlled by the people on the rig. Incorporating AI analytics in the equation, help minimizes human intervention and could achieve further improvement in ROP. After the ROP improvement observed while using MPD, both technologies were combined in a well drilling the same formation. An example is presented for the well drilled using both technologies.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2021 ◽  
Vol 137 ◽  
pp. 111189
Author(s):  
E.A. Ekimov ◽  
K.M. Kondrina ◽  
I.P. Zibrov ◽  
S.G. Lyapin ◽  
M.V. Lovygin ◽  
...  

Author(s):  
Gunter Heymann ◽  
Elisabeth Selb ◽  
Toni Buttlar ◽  
Oliver Janka ◽  
Martina Tribus ◽  
...  

By high-pressure/high-temperature multianvil synthesis a new high-pressure (HP) phase of Co3TeO6 was obtained. The compound crystallizes in the acentric trigonal crystal system of the Ni3TeO6-type structure with space group R3...


2021 ◽  
pp. 146808742110072
Author(s):  
Karri Keskinen ◽  
Walter Vera-Tudela ◽  
Yuri M Wright ◽  
Konstantinos Boulouchos

Combustion chamber wall heat transfer is a major contributor to efficiency losses in diesel engines. In this context, thermal swing materials (adapting to the surrounding gas temperature) have been pinpointed as a promising mitigative solution. In this study, experiments are carried out in a high-pressure/high-temperature vessel to (a) characterise the wall heat transfer process ensuing from wall impingement of a combusting fuel spray, and (b) evaluate insulative improvements provided by a coating that promotes thermal swing. The baseline experimental condition resembles that of Spray A from the Engine Combustion Network, while additional variations are generated by modifying the ambient temperature as well as the injection pressure and duration. Wall heat transfer and wall temperature measurements are time-resolved and accompanied by concurrent high-speed imaging of natural luminosity. An investigation with an uncoated wall is carried out with several sensor locations around the stagnation point, elucidating sensor-to-sensor variability and setup symmetry. Surface heat flux follows three phases: (i) an initial peak, (ii) a slightly lower plateau dependent on the injection duration, and (iii) a slow decline. In addition to the uncoated reference case, the investigation involves a coating made of porous zirconia, an established thermal swing material. With a coated setup, the projection of surface quantities (heat flux and temperature) from the immersed measurement location requires additional numerical analysis of conjugate heat transfer. Starting from the traces measured beneath the coating, the surface quantities are obtained by solving a one-dimensional inverse heat transfer problem. The present measurements are complemented by CFD simulations supplemented with recent rough-wall models. The surface roughness of the coated specimen is indicated to have a significant impact on the wall heat flux, offsetting the expected benefit from the thermal swing material.


Sign in / Sign up

Export Citation Format

Share Document