Modelling Geomechanics Into Petroleum Reservoir Numerical Simulation: A Coupled Technique in a Water Injection Project

2007 ◽  
Author(s):  
L.G. Rodrigues ◽  
L.B. Cunha ◽  
R. Chalaturnyk
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yijie Shi ◽  
Pengfei Wang ◽  
Ronghua Liu ◽  
Xuanhao Tan ◽  
Wen Zhang

Coalbed water injection is the most basic and effective dust-proof technology in the coal mining face. To understand the influence of coalbed water injection process parameters and coalbed characteristic parameters on coal wetting radius, this paper uses Fluent computational fluid dynamics software to systematically study the seepage process of coalbed water injection under different process parameters and coalbed characteristic parameters, calculation results of which are applied to engineering practice. The results show that the numerical simulation can help to predict the wetness range of coalbed water injection, and the results can provide guidance for the onsite design of coalbed water injection process parameters. The effect of dust reduction applied to onsite coalbed water injection is significant, with the average dust reduction rates during coal cutting and support moving being 67.85% and 46.07%, respectively, which effectively reduces the dust concentration on the working face and improves the working environment.


2007 ◽  
Author(s):  
Luis Glauber Rodrigues ◽  
Luciane Bonet Cunha ◽  
Richard J. Chalaturnyk

2010 ◽  
Vol 34-35 ◽  
pp. 1713-1717
Author(s):  
Hua Tong ◽  
Xiao Hua Zhu ◽  
Fu Cheng Deng ◽  
Shao Hu Liu

In order to clarify the abnormal failure mechanism for the spring of the water injection pump, the velocity and the pressure are simulated for hydraulic unit in different driven angle. The eccentric load is found in the ansys, which is the main factor for leading to the exceptional failure of the spring. The improvement method is presented by using Computational Fluid Dynamics (CFD) technology. Flow field of the improved hydraulic unit is more uniform after the numerical simulation. The effect of eccentric load is greatly reduced for the suction spring. At the same time without changing the rate of flow, section surface of the suction valve and the discharge valve is appropriately reduced to bring down the load of the spring. The fluid dynamics analysis and optimization of the hydraulic unit has been completed in this paper. This study has great significance in perfecting the working theory of the water injection pump and raising the robustness of the pump’s motion.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Tangqing Kuang ◽  
Qiang Feng ◽  
Tian Liu ◽  
Luohao Zhong ◽  
Yanqing Wang ◽  
...  

Water-projectile-assisted injection molding (W-PAIM) is a novel molding process for plastic pipes with complicated shape. It utilizes high-pressure water as a power to push a solid projectile to penetrate through the melt to form a hollow space. In order to investigate the penetration behavior of the projectile during the water injection stage of W-PAIM process, numerical simulation of the water injection stage of a W-PAIM pipe with straight and curved segments was carried out. A turbulent flow for the driving water was considered in the motion equation, and the dynamic mesh technology was used to deal with the moving solid projectile. The simulation results, including RWT and the flow fields, were compared with those of water-assisted injection molding (WAIM) pipe with the same outer dimensions. It was found that the residual wall thickness (RWT) of the W-PAIM pipe is much thinner than that of the WAIM pipe. The projectile has a crucial influence on the RWT. The pressure fields of W-PAIM and WAIM are very similar in both straight and curved segments. The velocity field and strain rate field near the penetration front in W-PAIM are quite different from those in WAIM due to the drag flow caused by the projectile penetration.


Sign in / Sign up

Export Citation Format

Share Document