Hybrid Bit Technology Deployment Yields Breakthrough Drilling Performance & Cost Savings for Operator

2021 ◽  
Author(s):  
Fawaz Al-Salah ◽  
Saad Al-Mejmed ◽  
Atef Abdelhamid ◽  
Ali Alnemer ◽  
Tahir Gada ◽  
...  

Abstract Optimized drilling performance and minimized cost per well are key objectives for operators in the current challenging oil and gas industry. The process of collecting lessons learned and designing new drill bit technologies based on these learnings is critical for optimizing drilling performance and reducing non-productive time (NPT). Southeast Kuwait onshore wells are drilled with conventional drill bit technology such as tungsten carbide insert (TCI) and polycrystalline diamond compact (PDC) bits on rotary or directional-motor bottom hole assemblies (BHA). This paper discusses the analysis that enabled breakthrough-drilling performance of 16-in. hybrid drill bit technology, delivering outstanding results and cost savings for an operator. The non-homogeneous carbonate formation in these onshore wells cause impact damage, limit the drilling efficiency of PDC and TCI bits, and result in a low rate of penetration (ROP) and poor dull conditions. A collaborative technical analysis identified key performance objectives to ensure a step change in section drilling performance. The analysis involved reviewing: Post-run dull conditions Operating parameters Formation compressive strengths Bit design Previous deployments results On Multiple wells, advanced hybrid bit technology and optimized drilling methods achieved outstanding 73-percent improvement in ROP over conventional technologies, saving operator's 3.8 drilling days and more than 27% of drilling costs. The hybrid design completed two consecutive best in class (BIC) wells in southeast Kuwait compared with the typical TCI performance of a single well per bit.

2021 ◽  
Author(s):  
Jonathan Kent Longridge ◽  
Johnny Shield ◽  
Sarah Finn ◽  
Tom Fulton

Objectives/Scope As the offshore oil and gas industry has changed, deep water Mobile Offshore Drilling Units (MODU) are commonly outfitted with dynamic positioning (DP) systems and on-vessel mooring equipment to facilitate drilling operations at ultra-deep and shallow water well locations. However, since many shallow water locations can experience harsh conditions and may require moorings for station-keeping performance, it is beneficial to enable a DP rig to quickly disconnect from its mooring system and avoid hazardous conditions without support vessel assistance. Providing this capability, acoustically releasable subsea mooring connectors allow a rig's mooring lines to be released remotely and almost immediately. Additionally, the ability to disconnect without Anchor Handler Vessel (AHV) assistance for mooring operations and rig transit support offers reduced risk and cost savings. Methods, Procedures, Process A brief review of existing quick-disconnect mooring devices will be presented. It will highlight how the technology has evolved and is being used, particularly in recent years. Successes, problems, and lessons learned from past InterMoor and SRP product development will be summarized and focused attention will be given to a significant number of more recent improvements to increase the product's reliability, availability, serviceability, and robustness. Improvements to ensure reliable long-term battery life and power supply, enhance on-vessel accessibility and user-friendliness for rig personnel, and employ advanced acoustic signal transmission, reception, and device status analytics will be discussed. External modifications to reinforce its robustness during deployment and internal electromechanical changes to facilitate its serviceability will also be described. Results, Observations, Conclusions A substantially lighter and smaller acoustically releasable mooring connector was developed two years ago, tested thereafter, recently deployed on several offshore mooring campaigns, and has now been upgraded to incorporate high-fidelity electronics with the ability to release under tension loads as high as 900 tonnes. As such, this second-generation device's reliability, accessibility, and serviceability are significantly enhanced. Results from offshore deployments from recent MODU and barge mooring operations will be summarized. This technology provides a safer way to quickly disconnect mooring lines and offers cost efficiency by allowing faster rig moves from one location to the next with reduced risk. Novel/Additive Information The paper will cover the work, challenges, trials, and tribulations required to bring a new product to market with cutting edge capabilities. Novel highlights will include the integration of a networked data transmission and communication system, the system's fundamental change from pneumatic to electromechanical actuation, and additional enhancements and improvements that are unique to mooring quick-disconnect devices and at the forefront of subsea technology.


2021 ◽  
Author(s):  
Mohamed Hammad ◽  
Julian Hernandez ◽  
Angel Hernandez ◽  
Karim Mammadli ◽  
Rustam Soltanov

Abstract In pursuit of efficiency and well construction cost optimization, the oil and gas industry demand continuous improvements and constant evolution of the service providers’ hardware and software, including Managed Pressure Drilling (MPD) technologies. Recently deployed in the Caspian Sea, the new automated riser system enabled an operator to reduce manual working hours in the moonpool by 85% and installation time by 59%. The improved efficiencies represent an additional saving of 19.5 hours rig time compared to the previous generation MPD below tension ring (BTR) systems, which are currently used on more than 19 floaters around the world. Lessons learned over the past 10 years led to the design and release of the new automated technology that resulted in this time and cost savings. The operator currently targets deep reservoirs that cannot be drilled using conventional drilling techniques because of very narrow operating windows. This paper discusses the service delivery process, engineering, and operational challenges that culminated in the flawlessly executed first deployment of the automated MPD riser system.


2021 ◽  
Vol 73 (08) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201272, “Lessons Learned in Developing Human Capital for the Oil and Gas Industry in Kazakhstan,” by Zhassulan Dairov, SPE, KIMEP University and Satbayev University; Murat Syzdykov, SPE, Satbayev University; and Jennifer Miskimins, SPE, Colorado School of Mines, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The World Economic Forum’s (WEF) Human Capital initiative has been implemented at Satbayev University (SU), Almaty, Kazakhstan, during the last 2 years. Participating in this effort are Chevron, Eni, Shell, and the Colorado School of Mines (Mines). The complete paper assesses the effectiveness of project components, such as industry guest lectures, summer internships, and program improvement, and provides lessons learned for human-resource-development initiatives. Introduction In most cases, the industry/ university alliance is intermittent, short-term, and underdeveloped. The engagement of three stakeholders, such as government, industry, and the university, is the most-successful model of joint performance. This approach allows all participants to create competitive advantages in the achievement of common objectives. Moreover, the role of governmental agencies is critical alongside professional organizations in facilitating such cooperation.


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


2012 ◽  
Vol 52 (1) ◽  
pp. 261
Author(s):  
Keith Won ◽  
Ming Zo Tan ◽  
I Made Budi Utamain

With the continuous surging in daily rental rates of oilfield exploration rigs, Casing while Drilling technology—which provides operators with an alternative drilling solution for a reduction in drilling flat-time and increased drilling operation efficiency—has appeared to be a standard part of drilling engineers’ toolkit in the well-planning process. Significant cost savings generated by Casing while Drilling have contributed to this technique being widely deployed on top-hole string installations on exploration and appraisal wells in the southeast Asia region. The double-section casing drilling technique has gained increasing popularity among operators in recent years; however, this technique development has been hamstrung by limited casing bit selections. An improved design casing bit has been highly anticipated in the industry to reduce this technique’s complexity of drilling process. Finding an equilibrium between durability and drill-out capability features for a casing bit has been a major challenge for bit designers. The increasing prospect and demand for a double-section casing drilling technique, however, has yielded the development of the casing bit design to a wider portfolio, inclusive of a more robust PDC (polycrystalline diamond compact) cutter-based drillable casing bit. The introduction of the new robust but drillable PDC cutter-based casing bit has broadened the Casing while Drilling application. The double-section casing drilling technique without the need for an additional conventional clean-out trip has become a strong contender to be part of drilling engineers’ next toolkit in delivering enhanced drilling performance and increasing operational efficiencies. This paper will introduce the first case history of the successful planning and implementation of the double-section casing drilling technique—particularly emphasising its optimised drilling performance and ease of drill-out without the need for a specialised drill-out bit.


2016 ◽  
Vol 56 (2) ◽  
pp. 559
Author(s):  
Brent Steedman

The Australian oil and gas industry is in a period of substantial challenges, including a significant decline in oil prices, fluctuating spot gas prices, a relentless drive for operating efficiency, and tight capital allocation, together with increased regulatory scrutiny and a reputation for below-standards productivity. On the upside, these market challenges provide significant opportunities for companies to bring in new investors, implement new operating models, apply innovation to update processes and practices, and restructure activities. Making material step-changes, requires companies to review, amend, and update joint venture operating agreements (JVOAs). KPMG has worked with many of Australia’s leading oil and gas companies on a range of joint venture engagements. This extended abstract outlines why JVOAs need to be reviewed with respect to the following key opportunities and challenges: Fast-changing global business operating models. Available cost savings by eliminating inconsistent management and operating models between joint ventures. Planning for potential restructuring, including separation of infrastructure (e.g. plants, pipelines, support) from reserve ownership. Sharing of services (e.g. maintenance and logistics) between unrelated joint ventures. Transparency of costs and asset performance. Improved joint venture governance (not more or over-governance) between participants to attract investment. Effective resourcing, noting the right transition of capabilities between deal-makers and joint venture operators. With this extended abstract the authors aim to provide ideas for consideration. Each of these ideas will impact JVOAs. The authors’ proposition is that now is the right time to complete a comprehensive review of JVOAs to enable organisations to move fast as new and innovative opportunities arise.


Author(s):  
Carlo De Bernardi

Abstract The API 20S Standard is designed to play a crucial role in leveraging Additive Manufacturing (AM) to foster innovation in the oil and gas industry. The paper, in association with the standard, will facilitate the understanding of how AM will enable equipment design improvements, faster prototyping, and better inventory management. By way of discussing the progress, challenges, and lessons learned from the standardization process, the paper aims to encourage a safer, broader, and faster adoption of AM technologies in the mainstream oil and gas applications. The paper will summarize the streamlining process, feedback from the API 20S task group, and current status of the standardization efforts. Additionally, upcoming challenges and the potential for the oil and gas industry industries to contribute to the standard will be summarized. The paper will also showcase a novel tiered approach (Additive Manufacturing Specification Levels) to allow the users of the document to match different levels of criticality.


Author(s):  
Robert W. Brewerton ◽  
Paul Geddes ◽  
Sava Medonos ◽  
Raghu Raman ◽  
Christopher C. E. Wilkins

The research and development activities following the Piper Alpha disaster have resulted in significantly improved technical safety of oil & gas facilities offshore and onshore. This improved technical safety resulted from the development of goal-setting, risk-based approach, the objective of which was to open the routes for design optimization and remove previous constraints that addressed the worst case and was prescriptive. Despite this initiative, a Quantitative Risk Assessment (QRA), while still being carried out, often remains “disconnected” from the practical design and prescriptive methods still take precedence. Resorting solely to a prescriptive approach can result in adequate protection missing in places where it should be, and applied in areas where there is a low likelihood of the hazard. This Paper addresses the application in the facility design, risk based methods and known behavior of structures and equipment in accidents. It stresses the importance of practical experience in the application of fire and explosion protection, and adequate design and operational experience. The Paper focuses on fire and explosion hazards and is based on more than 30 years of the authors’ experience in supporting facility design and assessment. Such approach has resulted in solutions with improved technical safety and significant cost-savings. It addresses both new installations and modifications of existing facilities.


Author(s):  
Patrick Höhn ◽  
Felix Odebrett ◽  
Carlos Paz ◽  
Joachim Oppelt

Abstract Reduction of drilling costs in the oil and gas industry and the geothermal energy sector is the main driver for major investments in drilling optimization research. The best way to reduce drilling costs is to minimize the overall time needed for drilling a well. This can be accomplished by optimizing the non-productive time during an operation, and through increasing the rate of penetration (ROP) while actively drilling. ROP has already been modeled in the past using empirical correlations. However, nowadays, methods from data science can be applied to the large data sets obtained during drilling operations, both for real-time prediction of drilling performance and for analysis of historical data sets during the evaluation of previous drilling activities. In the current study, data from a geothermal well in the Hanover region in Lower Saxony (Germany) were used to train machine learning models using Random Forest™ regression and Gradient Boosting. Both techniques showed promising results for modeling ROP.


Sign in / Sign up

Export Citation Format

Share Document