Geomechanics Insights for Successful Well Delivery in Complex Kutch - Saurashtra Offshore Region

2021 ◽  
Author(s):  
Rahul Talreja ◽  
Somessh Bahuguna ◽  
Rajeev Kumar ◽  
Joseph Zacharia ◽  
Ashani Kundan ◽  
...  

Abstract Subsurface lithofacies sequences encountered in the Kutch & Saurashtra Basin has its own set of challenges brought about due to its complex geological settings. These challenges are related to drilling, logging and completion and demand rigorous planning for the upcoming wells with detailed analysis of hazards associated with the overburden and reservoir rocks. In the study, these challenges are found to be linked with three prime geological sequences. Detailed integrated geomechanical analysis with inputs from drilling parameters, real-time formation experience, geophysical and geological are conducted for the improvement in borehole condition and improvising the effective drilling rate. A customized geomechanical workflow has been adopted to construct Mechanical Earth Model (MEM, Plumb et al., 2000) for strategic wells across the basin. Wellbore stability events related to geomechanics were reproduced and analyzed. The cause of the events was established and mitigatory methods were proposed. In addition, stress orientation along the wellbore trajectory and across the basin was estimated using breakouts identified on images and multi-arm calipers. Fast shear azimuth from Dipole Shear Sonic anisotropy analysis was also integrated to provide more robust and accurate estimates. Wells in the region are characterized by slow ROP, high torque and drag, wellbore instabilities (severe held ups, cavings, stuck pipes, string stalling etc.) and challenges while logging and running casing. The study has characterized these challenges and identified required solutions linked to the three geological sequences - weak Tertiary, Late Cretaceous Deccan Trap and Early Cretaceous to Jurassic clastic formations. The Tertiary formations are relatively weak (UCS∼300 to 1500psi) and prone to sanding and cavings due to breakouts. MEM based mud weight window estimation predicts that shear/failure hole collapse can be prevented using 10ppg to 11ppg mud weight. The formations below the Deccan Trap are locally categorized under Mesozoic sequence. The Deccan Trap and Mesozoic formations are extremely hard, tight, extremely stressed, heavily fractured and in some areas are also of HPHT nature. Rock strength shows a wide variation (UCS ∼5,000psi to 25,000psi) making bit selection a difficult task. Borehole failure is complex and cuttings analysis shows the signature of both shear and weak plane failure. Fractures on the image logs, rotation of breakouts, and fast shear azimuth support this theory. Mixing fracture sealing agents along with the use of optimal mud weights is found to be the most likely drilling solution. The understanding developed in the region and implementation of recommended steps assisted in successful drilling of two recent wells wherein gun-barrel shape borehole condition in both Tertiary and the Mesozoic sequence was achieved. The non-productive time was reduced by nearly 40 days increasing the effective ROP by 40%. In addition, smooth borehole prevented any major issues while carrying out casing and cementing operations.

Author(s):  
Abdulaziz M. Abdulaziz ◽  
Hayder L. Abdulridha ◽  
Abdel Sattar A. Dahab ◽  
Shaban Alhussainy ◽  
Ahmed K. Abbas

AbstractWellbore instability issues represent the most critical problems in Iraq Southern fields. These problems, such as hole collapse, tight hole and stuck pipe result in tremendous increasing in the nonproductive time (NPT) and well costs. The present study introduced a calibrated three-dimensional mechanical earth model (3DMEM) for the X-field in the South of Iraq. This post-drill model can be used to conduct a comprehensive geomechanical analysis of the trouble zones from Sadi Formation to Zubair Reservoir. A one-dimensional mechanical earth model (1DMEM) was constructed using Well logs, mechanical core tests, pressure measurements, drilling reports, and mud logs. Mohr–Coulomb and Mogi–Coulomb failure criteria determined the possibility of wellbore deformation. Then, the 1DMEMs were interpolated to construct a three-dimensional mechanical earth model (3DMEM). 3DMEM indicated relative heterogeneity in rock properties and field stresses between the southern and northern of the studied field. The shale intervals revealed prone to failure more than others, with a relatively high Poisson's ratio, low Young's modulus, low friction angle, and low rock strength. The best orientation for directional Wells is 140° clockwise from the North. Vertical and slightly inclined Wells (less than 40°) are more stable than the high angle directional Wells. This integration between 1 and 3DMEM enables anticipating the subsurface conditions for the proactive design and drilling of new Wells. However, the geomechanics investigations still have uncertainty due to unavailability of enough calibrating data, especially which related with maximum horizontal stresses magnitudes.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Song Leng ◽  
Li Hou ◽  
Yang Duan

An explicit analytical workflow for cylindrical hole stability analyses in general laminated materials that possess transversely isotropic (TI) anisotropy is presented. In this approach, the calculation of the distribution of the stresses around a cylindrical hole and the failure evaluation at the hole wall consider the effects of both material elasticity anisotropy and strength anisotropy caused by material laminated structures. Material strength anisotropy is assumed to be caused by the sliding of preexisting weakness planes oriented parallel to the isotropic plane of the material. The effect of anisotropy on strength is modeled by combining a shear failure criterion for the intact matrix and a weak plane failure criterion for the planes of weakness. We derive critical pressure solutions for the stability of the intact matrix around a hole filled with gas or fluid based on the Mohr–Coulomb failure criterion and Drucker–Prager failure criterion; either one of them can be combined with the weak plane failure criterion to give the solution for hole wall shear failure pressure. The solution for hole wall fracture initiation pressure is derived based on the tensile failure criterion. This approach can be applied to holes of arbitrary orientation in general laminated materials.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Yijin Zeng ◽  
Hailong Jiang ◽  
Shidong Ding ◽  
Junhai Chen ◽  
Yi Wang ◽  
...  

Wellbore instabilities frequently occur in mudstone formation with weak plane bedding because of strong anisotropies. The mechanics parameters of weak plane bedding are of vital significance to the wellbore stability analysis for mudstone formations. The conventional method for determining the mechanics parameters is to fit lots of triaxial test data due to the blindness of coring. In this paper, an evaluation method of the mechanics parameters of weak plane bedding is proposed to improve the accuracy of weak plane bedding mechanical properties. The mechanics parameters of weak plane bedding are obtained by combing the single-weak plane failure criterion with the compressive strength of rock obtained by the triaxial test of cores with different coring angles. It is seen that the new evaluation method is simple and convenient. On the other hand, a validation method of the mechanics parameters of weak plane bedding is proposed to ensure their accuracy. The compressive strength obtained from the core with the special coring angle is compared with the theoretical compressive strength for verifying the accuracy of weak plane bedding mechanical properties. It is observed that the proposed evaluation and validation methods can be used to measure the value of weak plane bedding mechanical properties precisely. The proposed methods are general and can be used for measuring the mechanical properties of fracture weak-plane and joint weak-plane.


Sign in / Sign up

Export Citation Format

Share Document