Achieving Near-Uniform Fluid and Proppant Placement in Multistage Fractured Horizontal Wells: A Computational Fluid Dynamics Modeling Approach

2021 ◽  
pp. 1-20
Author(s):  
Xinghui Liu ◽  
Jiehao Wang ◽  
Amit Singh ◽  
Margaretha Rijken ◽  
Dean Wehunt ◽  
...  

Summary Multistage plug-and-perforate fracturing of horizontal wells has proved to be an effective method to develop unconventional reservoirs. Various studies have shown uneven fluid and proppant distributions across all perforation clusters. It is commonly believed that both fracturing fluid and proppant contribute to unconventional well performance. Achieving uniform fluid and proppant placement in all perforation clusters is an important step toward optimal stimulation. This paper discusses how to achieve such uniform placement in each fracturing stage by means of a computational fluid dynamics (CFD) modeling approach. A laboratory-scale CFD model was built and calibrated using experimental data of proppant transport through horizontal pipes available from several laboratory configurations. A field-scale model was then built and validated using perforation erosion data from downhole camera observations. With the field-scale model validated, CFD simulations were performed to evaluate the impact of key parameters on fluid and proppant placement in individual perforations and clusters. Some key parameters investigated in this study included perforation variables (orientation, size, and number), cluster variables (count and spacing), fluid properties, proppant properties, pumping rates, and stress shadow effects. Both laboratory and CFD results show that bottom-side perforations receive significantly more proppant than top-side perforations because of gravitational effects. Laboratory and CFD results also show that proppant distribution is increasingly toe-biased at higher rates. Proppant concentration along the wellbore from heel to toe varies significantly. Gravity, momentum, viscous drag, and turbulent dispersion are key factors affecting proppant transport in horizontal wellbores. This study demonstrates that near-uniform fluid and proppant placement across all clusters in each stage is achievable by optimizing perforation/cluster variables and other treatment design factors. CFD modeling plays an important role in this design-optimizationprocess.

2021 ◽  
Author(s):  
Xinghui Liu ◽  
Jiehao Wang ◽  
Amit Singh ◽  
Margaretha Rijken ◽  
Larry Chrusch ◽  
...  

Abstract Multi-stage plug-n-perf fracturing of horizontal wells has proven to be an effective method to develop unconventional reservoirs. Various studies have shown uneven fluid and proppant distributions across all perforation clusters. It is commonly believed that both fracturing fluid and proppant contribute to unconventional well performance. Achieving uniform fluid and proppant placement is an important step toward optimal stimulation. This paper discusses how to achieve such uniform placement in each stage via a CFD (Computational Fluid Dynamics) modeling approach. CFD models in several lab scales were built and calibrated using experimental data of proppant transport through horizontal pipes in several laboratory configurations. A field-scale model was then built and validated using perforation erosion data from downhole camera observations and the same model parameters calibrated in the lab-scale model. With the field-scale model validated, CFD simulations were performed to evaluate the impact of key parameters on fluid and proppant placement in individual perforations and clusters. Some key parameters investigated in this study included perforation parameters (size, orientation, number), cluster spacing, cluster count per stage, fluid properties, proppant properties, pumping rates, casing sizes, and stress shadow effects, etc. Both lab and CFD results show that bottom-side perforations receive significantly more proppant than top-side perforations due to gravitational effects. Lab and CFD results also show that proppant distribution is increasingly toe-biased at higher rates. Proppant concentration along the wellbore from heel to toe generally varies significantly. Gravity, momentum, viscous drag, and turbulent dispersion are key factors affecting proppant transport in horizontal wellbores. This study demonstrates that near-uniform fluid and proppant placement across all clusters in each stage is achievable by optimizing perforation, cluster, and other treatment design factors. Validated CFD modeling plays an important role in this design optimization process.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Minghan Luo ◽  
Wenjie Xu ◽  
Xiaorong Kang ◽  
Keqiang Ding ◽  
Taeseop Jeong

The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical generation and contaminant degradation efficiency of the VUV/UV process showed strong correlation with the mixing level in a photoreactor, which confirmed the promising potential of the developed rotating annular VUV reactor in water treatment.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5421-5425
Author(s):  
MICHAL RICHTAR ◽  
◽  
PETRA MUCKOVA ◽  
JAN FAMFULIK ◽  
JAKUB SMIRAUS ◽  
...  

The aim of the article is to present the possibilities of application of computational fluid dynamics (CFD) to modelling of air flow in combustion engine intake manifold depending on airbox configuration. The non-stationary flow occurs in internal combustion engines. This is a specific type of flow characterized by the fact that the variables depend not only on the position but also on the time. The intake manifold dimension and geometry strongly effects intake air amount. The basic target goal is to investigate how the intake trumpet position in the airbox impacts the filling of the combustion chamber. Furthermore, the effect of different distances between the trumpet neck and the airbox wall in this paper will be compared.


Sign in / Sign up

Export Citation Format

Share Document