Improving Produced-Water Quality by Investigating the Farthest Upstream Solution

2005 ◽  
Author(s):  
C. Westaby ◽  
N. Fransen
Keyword(s):  
2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Sharon T. Shaheen

Under the Produced Water Act (“Act”) enacted in the 2019 regular legislative session, the New Mexico Legislature authorized the New Mexico Oil Conservation Division (“OCD”) and the New Mexico Water Quality Control Commission (“WQCC”) to regulate produced water resulting from oil and gas drilling or production. The Act governs the transportation and sale of produced water, recycled water (also referred to as recycled produced water), and treated water (also referred to as treated produced water).


2005 ◽  
Author(s):  
Martha Cather ◽  
Robert Lee ◽  
Ibrahim Gundiler ◽  
Andrew Sung ◽  
Naomi Davidson ◽  
...  

2020 ◽  
Author(s):  
Stefano Rossini ◽  
Giulia Roppoli ◽  
Pamela Mariotti ◽  
Simona Renna ◽  
Matteo Manotti ◽  
...  

Author(s):  
Matthew R. Landsman ◽  
Rahul Sujanani ◽  
Samuel H. Brodfuehrer ◽  
Carolyn M. Cooper ◽  
Addison G. Darr ◽  
...  

Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.


2014 ◽  
Vol 556-562 ◽  
pp. 867-871
Author(s):  
Qiu Shi Zhao

It is significative to study sewage treatment process in low permeable oil fields. It could enhance the oil recovery. The water quality characteristics and oil/water separation characteristics were researched during different period process by GC-MS. It shows that there are about 108 kinds of organic matters, including 45 kinds of aliphatic hydrocarbon, 7 kinds of aine, 5 kinds of sulfocompound and 9 kinds of hexacyclic compounds, such as Benzene, phenol, naphthalene and anthracene. The percent of oil droplets which size was less than 10μm is 57.3%, compared to 91.6% which size was more than 50μm. It is difficult to separate the water and oil. The remaining oil was emulsified oil. The process was hard to decrease COD, and some pollutants were existed in water, such as Arsenic, Selenium, Mercury ,Cadmium and Cr6+. It is further proposed to optimize and develop this process to removal oil and suspended solids.


2003 ◽  
Author(s):  
Martha Cather ◽  
Robert Lee ◽  
Ibrahim Gundiler ◽  
Andrew Sung

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2111 ◽  
Author(s):  
Andrei-Emil Briciu ◽  
Adrian Graur ◽  
Dinu Iulian Oprea

The water quality of rivers worldwide is of persistent interest due to its impact on human life. Five streamwater quality parameters of Suceava River were monitored in 2019 upstream and downstream of Suceava city, Romania: dissolved oxygen, specific conductivity, pH, oxidation-reduction potential, and temperature. Data was recorded at a high temporal frequency, every hour, and produced Water Quality Index (WQI) time series of similar resolution. Our additive WQI has variants with particular advantages. Water quality of Suceava city exhibits a diurnal cycle. Upstream, WQI values indicate a quasi-permanent good water quality; downstream, the water quality oscillates around the average WQI value because of the various sources of water contaminants, especially the wastewaters from the wastewater treatment plant. Parameters from this point source of pollution are taken into account to explain the decaying streamwater quality towards the end of 2019. WQI is useful for detecting time intervals when water self-purification events have a high chance of occurrence.


2020 ◽  
Vol 20 (2020) ◽  
pp. 58-59
Author(s):  
Veronica Del Valle Silva ◽  
Bruna Onuki ◽  
Marcela Morales Bobes ◽  
Julieta Mariano

2021 ◽  
Author(s):  
Jawaher Almorihil ◽  
Aurélie Mouret ◽  
Isabelle Hénaut ◽  
Vincent Mirallès ◽  
Abdulkareem AlSofi

Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and other chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. In addition, we studied the impact of enhanced oil recovery (EOR) chemicals on the different separation techniques in terms of efficiency and water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water: oil ratio using dead crude oil and synthetic representative brines with or without the EOR chemicals. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used Jar Tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation even in the presence of EOR chemicals. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. In the presence of EOR chemicals, filtration lost its effectiveness due to the low interfacial tension with surfactants and water quality became poor. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. However, the benefits from media filtration were annihilated by the presence of EOR chemicals. Based on these results and at least for our case study, we conclude that centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. In terms of the effects of EOR chemicals, the performance of centrifugation is reduced while filtrations are largely impaired by the presence of EOR chemicals. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.


Sign in / Sign up

Export Citation Format

Share Document