Enhancing Rheological Properties and Reduction of Total Acid Number of a Heavy Crude Oil Using Ethanol and Trona

2021 ◽  
Author(s):  
Ahmed Almadhaji ◽  
Mohammed Saeed ◽  
Hitham Ibrahim ◽  
Anas Ahmed ◽  
Ragaei Maher

Abstract One of Sudanese fields has a heavy crude oil which has a high Total Acid Number (TAN) and high viscosity, can cause a lot of problems in production operation, transport, and storage facilities. The effect of ethanol dilution on the rheological properties of crude (especially the kinematic viscosity) was studied and presented. Moreover, the consequence of blending Trona (NaHCO3.Na2CO3) with a specified amount of Ethanol in the crude can reduce (TAN) to acceptable limits for solving corrosion and flowability problems. The approach is based on the experiments and laboratory works on the crude's samples after blending with a certain amount of Trona and Ethanol. It depends on the results of apparatuses, that are used to measure the samples, for instance, Calibrated glass capillary viscometer and ASTM D664 titration volume Total Acid Number tester which are employed to get the values of kinematic viscosity and TAN, respectively. The tests are established with crude have kinematic viscosity (187 cst) at temperature 75°C and TAN almost (8.51). While increasing the dosage of Trona at the ambient temperature (38°C) with the certain mass percentage of Ethanol (5%), TAN is decreased from (8.51 to 4.00 mgKOH/g). Also, the kinematic viscosity is declined from (187 cst to 96.75 cst) after increasing the volume of Ethanol at 75°C. These outcomes indicated that Ethanol could reduce Sudanese heavy crude's viscosity, and the Trona could decrease the TAN. This reduction occurred due to Ethanol dilution. The Ethanol molecules disturb the molecular structure of the crude, which forms polar bond within the hydrocarbon chain that leads to lower the friction between molecules of hydrocarbon in the crude. Also, Trona shrinks TAN because the Hydroxide ions (OH+) that founded in Trona neutralize the Hydrogen ions (H−) in Naphthenic acid in Sudanese heavy crude. This study can be summarized in the ability to solve the difficulty of transporting and processing the heavy crude oil in refineries; maintains the quality of the crude while utilizing it with friendly environmental materials and low cost.

2012 ◽  
Vol 4 (5) ◽  
pp. 21-31 ◽  
Author(s):  
Haydée Quiroga-Becerra

This article presents the kinetic study of the esterification reaction of naphthenic acids from a Colombian heavy crude oil, with a Total Acid Number (TAN) of 7,33 mgKOH/g, in a batch type reactor. Temperature was changed between 150 - 250°C while the ratio moles of methanol per mole of carboxylic groups, remained constant in 20:1. The reaction time was varied from 0 - 600 minutes. Reduction in the concentration of naphthenic acids in the reactor is determined by the measurement of Number Total Acid (TAN), ASTM D 664. Naphthenic acids were extracted from the crude and structurally characterized by Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). The esterified oil was analyzed by FTIR, to identify the variation of the main functional groups. After determining the activation energy, frequency factor and, reaction order, a kinetic law was proposed for the esterification of naphthenic acids in Colombian heavy oil. Finally, it was evaluated the effect of esterification of naphthenic acids on the corrosion of steel ASTM A106 Gr.B. The corrosion of steel was reduced from 34,16 to 3,08 mils per year, (mpy), after esterification of naphthenic acids.


2011 ◽  
Vol 4 (3) ◽  
pp. 61-72
Author(s):  
Lilia Rodríguez ◽  
Geoffrey Viviescas

The present work involved the formulation of solid-liquid suspensions of by-products of heavy and extra heavy crude oil process upgrades, coke and asphaltenes from Delayed coking and Deasphalting processes. This was done by controlling rheological properties and following specifications for pipeline transmission, similar to those of liquid hydrocarbons. The formulated products guarantee the possibility of moving the by products in a fluidized way, minimizing storage, handling, environmental and operational costs in transportation, and providing an attractive alternative as non conventional fuel. Regarding the formulation of suspensions, it was necessary to establish the effect of formation components such as: surfactants, stabilizers, as well as the type, amount of solids and particle size ratio on the flow properties of the resulting product. The parameters analyzed for rheological properties of pipeline transport were viscosity, particle size distribution, static and dynamic stability. Laboratory tests were performed in high precision rheometers -TA Instruments RX1500 and Haake RS600- and Mastersizer 2000 particle size analyzer. At pilot scale, we used a closed loop to verify flow parameters, including normal and critical transport scenarios: Sudden shutdowns and extended ones of up to 72 hours, with subsequent pumping re-starts. Tests performed at the lab and the pilot plant showed better rheological properties in the formulations with bimodal particle size distribution. This allowed higher loads of solid, up to 52%, and an improved mobility, reflected as lower viscosity. A non-Newtonian rheological behavior became evident, characterized by yield stress to ensure pumpability after prolonged inactivity. The pressure drops and calculation of apparent viscosity obtained in the pilot plant were compared and verified with lab results, showing reproducibility.


2017 ◽  
Vol 14 (4) ◽  
pp. 354 ◽  
Author(s):  
Ravindra Kumar ◽  
Shirsendu Banerjee ◽  
Ajay Mandal ◽  
Tarun Kumar Naiya

2015 ◽  
Vol 1107 ◽  
pp. 335-340 ◽  
Author(s):  
Nurasmat Mohd Shukri ◽  
Jafariah Jaafar ◽  
Wan Azelee Wan Abu Bakar ◽  
Zaiton Abdul Majid

An increasing interest in acidic fractions in crude oil was prompted by the corrosion problems that these compounds caused during oil refining process. This corrosion is associated with the total acid number (TAN). With the anticipated growth of acidic crudes in the market, a new technology for removal of the acidic fractions was introduced. Petronas Penapisan Melaka Light Crude (B) with TAN values of 2.52 was studied. The ammoniated polyethylene glycol (PEG) was used as the deacidifying agent in this study with a concentration range of 100-2500 mg/L. Data indicated that the optimal content of ammoniated polyethylene glycol in crude B was 1500 mg/L, and PEG with molecular weight of 2000 was the most promising co-solvent with the reagent/oil ratio being 0.4:1 (wt/wt). A reaction time of 5 min with a suitable reaction temperature of 40°C and optimal stirring time of 5 min were sufficient to achieve the goal for crude oil B. The TAN was lowered to 0.28 for crude oil B. The percentage of acid removal for crude B was 78. An increase in the concentration of basic chemical reduced the TAN value for crude oil B to less than 1.


2019 ◽  
Vol 7 (SI-TeMIC18) ◽  
Author(s):  
Norshahidatul Akmar Shohaimi ◽  
Wan Azelee Wan Abu Bakar ◽  
Nurasmat Mohd Shukri ◽  
Khairan Shaidi

Naphthenic acids (NAs) is one of the major sources of corrosion in oil pipelines and distillation units in crude oil refineries. Removing NA compounds from crude oils is regarded as one of the most crucial processes in heavy oil upgrading. Catalytic deacidification method had been developed in order to reduce the total acid number values in crude oil. Crude oil from Petronas Penapisan Melaka had been chosen to be studied with original total acid number (TAN) of 2.43 mg KOH/g. The parameters used were different catalyst calcination temperatures, catalyst loading, reagent concentration, reaction times and reaction temperature. Acid removal agent of 2-methylimidazole in ethanol and monometallic calcium and cerium doped with alumina were used as a catalyst. The results showed that with the aid of catalyst, the TAN can be reduced to lower than 1 mg KOH/g. Catalyst of Ca/Al2O3 calcined at 900oC gave a better reduction than Ce/Al2O3 with 83.54% of TAN reduction (2.43 to 0.4) for Ca/Al2O3 catalyst and 71.19% (2.43 to 0.7) for Ce/Al2O3 catalyst. The best catalyst underwent several characterization methods such as X-Ray Diffraction Spectroscopy (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis (TGA-DTA) for its physicochemical properties. It can be concluded that catalytic deacidification method was effective in extracting NAs from the crude oil thus lowered the TAN value to less than 1 mg KOH/g. Keywords: Naphthenic acids; Crude oil; Catalysts


Sign in / Sign up

Export Citation Format

Share Document