TAML-3 Multilateral Wells Construction with Multi-Stage Fracturing in Producing Wells

2021 ◽  
Author(s):  
Stanislav Vladimirovich Tuzhilkin ◽  
Filipp Igorevich Brednev ◽  
Andrey Vladimirovich Yastreb ◽  
Ruslan Pavlovich Uchuev ◽  
Andrey Evgenievich Parshakov ◽  
...  

Abstract The article presents geological substantiations, the process and the results of the construction of a multilateral well with multistage fracturing from the existing producing well in the Yuzhno-Priobskoye field. The scope of construction of a multilateral TAML-3 well as per the international classification with a saved mainbore was to prove the effectiveness of the multilateral technology and its economic feasibility in the conditions of an extensive stock of producing wells. Every year we are seeing an increasing number of new wells being drilled in reservoirs with worsening characteristics which is caused by low permeability. Sharp production declines (up to 70% in the first year) and an increasing amount of periodic wells highlight the need to advance well stimulation methods. Well workovers by drilling a horizontal lateral while keeping the mainbore in operation allows to increase the production rate by 30% compared to a conventional sidetracking. While keeping the production rate of the mainbore, this technology provides for an additional production from a lateral bore and allows to operate the well at the planned bottomhole pressure.

2018 ◽  
Vol 2 (3) ◽  
pp. 206-219
Author(s):  
Louay Qais Abdullah ◽  
Duraid Faris Khayoun

The study focused basically on measuring the relationship between the material cost of the students benefits program and the benefits which are earned by it, which was distributed on college students in the initial stages (matinee) and to show the extent of the benefits accruing from the grant program compared to the material burdens which matched and the extent of success or failure of the experience and its effect from o scientific and side on the Iraqi student through these tough economic circumstances experienced by the country in general, and also trying to find ways of proposed increase or expansion of distribution in the future in the event of proven economic feasibility from the program. An data has been taking from the data fro the Department of Financial Affairs and the Department of Studies and Planning at the University of Diyala with taking an data representing an actual and minimized pattern and questionnaires to a sample of students from the Department of Life Sciences in the Faculty of Education of the University of Diyala on the level of success and failure of students in the first year of the grant and the year before for the purpose of distribution comparison. The importance of the study to measure the extent of interest earned in comparision whit the material which is expenseon the program of grant (grant of students) to assist the competent authorities to continue or not in the program of student grants for the coming years.


Author(s):  
Mohammed Alkahtani ◽  
Muhammad Omair ◽  
Qazi Salman Khalid ◽  
Ghulam Hussain ◽  
Imran Ahmad ◽  
...  

The management of a controllable production in the manufacturing system is essential to achieve viable advantages, particularly during emergency conditions. Disasters, either man-made or natural, affect production and supply chains negatively with perilous effects. On the other hand, flexibility and resilience to manage the perpetuated risks in a manufacturing system are vital for achieving a controllable production rate. Still, these performances are strongly dependent on the multi-criteria decision making in the working environment with the policies launched during the crisis. Undoubtedly, health stability in a society generates ripple effects in the supply chain due to high demand fluctuation, likewise due to the Coronavirus disease-2019 (COVID-19) pandemic. Incorporation of dependent demand factors to manage the risk from uncertainty during this pandemic has been a challenge to achieve a viable profit for the supply chain partners. A non-linear supply chain management model is developed with a controllable production rate to provide an economic benefit to the manufacturing firm in terms of the optimized total cost of production and to deal with the different situations under variable demand. The costs in the model are set as fuzzy to cope up with the uncertain conditions created by lasting pandemic. A numerical experiment is performed by utilizing the data set of the multi-stage manufacturing firm. The optimal results provide support for the industrial managers based on the proactive plan by the optimal utilization of the resources and controllable production rate to cope with the emergencies in a pandemic.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 397-407 ◽  
Author(s):  
Mashhad Mousa Fahes ◽  
Abbas Firoozabadi

Summary Wettability of two types of sandstone cores, Berea (permeability on the order of 600 md), and a reservoir rock (permeability on the order of 10 md), is altered from liquid-wetting to intermediate gas-wetting at a high temperature of 140C. Previous work on wettability alteration to intermediate gas-wetting has been limited to 90C. In this work, chemicals previously used at 90C for wettability alteration are found to be ineffective at 140C. New chemicals are used which alter wettability at high temperatures. The results show that:wettability could be permanently altered from liquid-wetting to intermediate gas-wetting at high reservoir temperatures,wettability alteration has a substantial effect on increasing liquid mobility at reservoir conditions,wettability alteration results in improved gas productivity, andwettability alteration does not have a measurable effect on the absolute permeability of the rock for some chemicals. We also find the reservoir rock, unlike Berea, is not strongly water-wet in the gas/water/rock system. Introduction A sharp reduction in gas well deliverability is often observed in many low-permeability gas-condensate reservoirs even at very high reservoir pressure. The decrease in well deliverability is attributed to condensate accumulation (Hinchman and Barree 1985; Afidick et al. 1994) and water blocking (Engineer 1985; Cimolai et al. 1983). As the pressure drops below the dewpoint, liquid accumulates around the wellbore in high saturations, reducing gas relative permeability (Barnum et al. 1995; El-Banbi et al. 2000); the result is a decrease in the gas production rate. Several techniques have been used to increase gas well deliverability after the initial decline. Hydraulic fracturing is used to increase absolute permeability (Haimson and Fairhurst 1969). Solvent injection is implemented in order to remove the accumulated liquid (Al-Anazi et al. 2005). Gas deliverability often increases after the reduction of the condensate saturation around the wellbore. In a successful methanol treatment in Hatter's Pond field in Alabama (Al-Anazi et al. 2005), after the initial decline in well deliverability by a factor of three to five owing to condensate blocking, gas deliverability increased by a factor of two after the removal of water and condensate liquids from the near-wellbore region. The increased rates were, however, sustained for a period of 4 months only. The approach is not a permanent solution to the problem, because the condensate bank will form again. On the other hand, when hydraulic fracturing is used by injecting aqueous fluids, the cleanup of water accumulation from the formation after fracturing is essential to obtain an increased productivity. Water is removed in two phases: immiscible displacement by gas, followed by vaporization by the expanding gas flow (Mahadevan and Sharma 2003). Because of the low permeability and the wettability characteristics, it may take a long time to perform the cleanup; in some cases, as little as 10 to 15% of the water load could be recovered (Mahadevan and Sharma 2003; Penny et al. 1983). Even when the problem of water blocking is not significant, the accumulation of condensate around the fracture face when the pressure falls below dewpoint pressure could result in a reduction in the gas production rate (Economides et al. 1989; Sognesand 1991; Baig et al. 2005).


2018 ◽  
Vol 876 ◽  
pp. 181-186
Author(s):  
Son Tung Pham

Sand production is a complicated physical process depending on rock mechanical properties and flow of fluid in the reservoir. When it comes to sand production phenomenon, many researchers applied the Geomechanical model to predict the pressure for the onset of sand production in the reservoir. However, the mass of produced sand is difficult to determine due to the complexity of rock behavior as well as fluid behavior in porous media. In order to solve this problem, there are some Hydro – Mechanical models that can evaluate sand production rate. As these models require input parameters obtained by core analysis and use a large empirical correlation, they are still not used popularly because of the diversity of reservoirs behavior in the world. In addition, the reliability of these models is still in question because no comparison between these empirical models has been studied. The onset of sand production is estimated using the bottomhole pressure that makes the maximum effective tangential compressive stress equal or higher than the rock strength (failure criteria), which is usually known as critical bottomhole pressure (CBHP). Combining with Hydro – Mechanical model, the main objective of this work aims to develop a numerical model that can solve the complexity of the governing equations relating to sand production. The outcome of this study depicts sand production rate versus time as well as the change of porosity versus space and time. In this paper, the Geomechanical model coupled with Hydro – Mechanical model is applied to calibrate the empirical parameters.


2021 ◽  
pp. 1-17
Author(s):  
Mitra Abbaspour ◽  
Hojjat Mahdiyar ◽  
Yousef Kazemzadeh ◽  
Mehdi Escrochi ◽  
Mohsen Nasrabadi

Abstract Production rate decline is one of the most common challenges in production engineering. Obviously, the first step to overcome this challenge is to understand its main reason. In this article a new approach is developed which can be used to compare the effectiveness of artificial lifting and well stimulation. The method is based on a couple of charts which summarize the results of integrated simulation of formation and well-column. In the first graph, called FPI curve, production rate is drawn as a function of productivity index. Some important points are also specified on this diagram which are current state, production rate at maximum possible productivity index and production rate when the well is equipped with a pump or gas lifting. In the second graph derivative of production rate of different wells are drawn as a function of productivity index. The analysis of three actual wells with conventional IPR-TPR curves and also our suggested curves is discussed in this paper. It is seen that the introduced approach can be used as a powerful tool to predict the effectiveness of well stimulation and artificial lifting and make a clear comparison between them.


2020 ◽  
Vol 187 ◽  
pp. 106738 ◽  
Author(s):  
Tianbo Liang ◽  
Dongya Wei ◽  
Fujian Zhou ◽  
Xiuhui Li ◽  
Lishan Yuan ◽  
...  

2012 ◽  
Author(s):  
Mahbub Ahmed ◽  
Zillur Rahim ◽  
Hamoud Al-Anazi ◽  
Adnan Al-Kanaan ◽  
Mohammed Mohiuddin

Sign in / Sign up

Export Citation Format

Share Document