The Local Corrosion Rate Determination According to Weight Measurements Corrosion Coupons in Oilfield Conditions

2021 ◽  
Author(s):  
Valeriya Eduardovna Tkacheva ◽  
Andrey Nicolaevich Markin ◽  
Ignaty Andreevich Markin ◽  
Alexandr Yuryevich Presnyakov

Abstract Complications associated with a corrosive environment, according to Rosneft's data as of 01.01.2020, are among the prevailing at oil and gas production facilities and rank fourth among other factors complicating production - 12% the complicated mechanized wells. Failures due to corrosion are the second largest complicating factors. Based on the results of approbation, the article proposes a method for calculating the maximum rate of local carbon dioxide corrosion, applicable in oilfield conditions, including to complicated stocks of oil wells and pipelines of oil gathering systems. Based on the approbation results, a method for calculating the maximum rate of local carbon dioxide corrosion, applicable in oilfield conditions, including to complicated stocks of oil wells and oil gathering pipelines systems is proposed in the article. The proposed technique is realizable according to the results one of "traditional" methods the corrosion monitoring - weight (or gravimetric). The approbation results and application possibility the technique in the pilot tests process in assessing the protective ability of corrosion inhibitors and the selection the effective dosages in relation to local damages, which are the main cause the oilfield equipment failures according the factor "Corrosive aggressiveness" (one of the complicating factors in terms of gradation, adopted in the Rosneft Company regulations). On practical examples the oilfield equipment operation, the results of corrosion monitoring and the summary statistics the corrosive stock of wells (using the example of an oil Company), the current situation with respect to this type of complication and relevance the issue under consideration is shown.

2021 ◽  
Vol 26 (1) ◽  

Complications associated with a corrosive environment, according to Rosneft’s data at 01.01.2020, are among the prevailing at oil and gas production facilities and rank fourth among other factors complicating production – 12% the complicated mechanized wells. Failures due to corrosion are the second largest complicating factors. Based on the results of approbation, the article proposes a method for calculating the maximum rate of local carbon dioxide corrosion, applicable in oilfield conditions, including to complicated stocks of oil wells and pipelines of oil gathering systems. Based on the approbation results, a method for calculating the maximum rate of local carbon dioxide corrosion, applicable in oilfield conditions, including to complicated stocks of oil wells and oil-gathering pipelines systems is proposed in the article. The proposed technique is realizable according to the results one of «traditional» methods the corrosion monitoring - weight (or gravimetric). The approbation results and application possibility of the technique in the pilot tests process in assessing the protective ability of corrosion inhibitors and the selection of the effective dosages in relation to local damages, which are the main cause the oilfield equipment failures according the factor «Corrosive aggressiveness» (one of the complicating factors in terms of gradation, adopted in the Rosneft Company regulations). On practical examples the oilfield equipment operation, the results of corrosion monitoring and the summary statistics the corrosive stock of wells (using the example of an oil Company), the current situation with respect to this type of complication and relevance the issue under consideration is shown.


2020 ◽  
Vol 129 (4) ◽  
pp. 14-18
Author(s):  
L. A. Magadova ◽  
◽  
K. A. Poteshkina ◽  
V. D. Vlasova ◽  
M. S. Pilipenko ◽  
...  

The effect of carbon dioxide corrosion on the pipeline transport system and its protection methods are considered in this article. The corrosion inhibitors represented by imidazoline-based compositions and industrial samples of corrosion inhibitors are used as protective reagents, and the model of produced water saturated with carbon dioxide is used as an aggressive environment. The protective properties of inhibitors and the corrosion rate were evaluated by gravimetric analysis. The paper presents the results of the study of industrial samples and inhibitory compositions developed on the basis of the REC “Promyslovaya himiya”. According to the results of the work, a positive effect of additives of nonionic surfactants on the protective properties of inhibitors was noted.


2019 ◽  
Vol 121 ◽  
pp. 01019
Author(s):  
Aleksandr Yusupov

In Gazprom dobycha Urengoy LLC, as in other oil-and-gas production enterprises, there are problems of increased equipment wear due to corrosion. A special role there plays CO2 corrosion. Despite the homogeneity of the extracted fluid and even chemical composition of the working medium, the nature and intensity of corrosion damage to pipelines and equipment varies over a wide range, due to different thermobaric parameters of well operation. To determine parameters influencing the rate of corrosion most different methods of statistical analysis were used. The paper provides a methodology for compiling a mathematical model and assessing its reliability. As a result, the equation of carbon dioxide corrosion in relation to the conditions of Achimov deposits of Urengoy oil, gas and condensate field was obtained. The type of the obtained equation was chosen according to the model of the classical de Waard-Milliams carbon dioxide corrosion equation. The model proposed by the authors describes the processes of carbon dioxide corrosion more reliably than the de Waard-Milliams equation does. The disadvantage of the developed model is that it does not reliably describe the speed of corrosion in wells with corrosion rates, significantly exceeding the average values for all wells studied.


2020 ◽  
pp. 30-35
Author(s):  
D. N. Zapevalov ◽  
R. K. Vagapov

The use of various intrusive and non-intrusive methods of corrosion monitoring makes it possible to assess the corrosion situation and the effectiveness of the applied corrosion protection agents in conditions of internal corrosion at gas production facilities due to the presence of aggressive gases. The analysis of the application of ultrasonic testing methods as part of corrosion monitoring of internal corrosion at gas production facilities in the presence of corrosive components is carried out. Ultrasonic thickness measurement is widely used as a non-intrusive method for monitoring internal corrosion and detecting corrosion defects in promising gas fields. Many gas fields (Bovanenkovskoye oil and gas condensate field, Urengoy oil and gas field and others) revealed corrosion defects due to cases of internal corrosion due to the presence of increased amounts of carbon dioxide in the produced hydrocarbons. Under conditions of corrosion in the presence of carbon dioxide, ultrasonic methods for measuring the thickness of a metal have certain limitations associated with the unpredictable local nature of carbon dioxide corrosion, which should be considered when used in gas facilities. The main method for measuring thickness under operational conditions is ultrasonic thickness measurement, which is used in conjunction with radiographic monitoring. Using these two main non-intrusive methods, corrosion monitoring monitors the thinning of the metal, the size and depth of local defects and the dynamics of their change over time. Based on the results of measuring the residual wall thickness of the pipe and equipment, the possibility of their further work is determined, and recommendations are made on extending the safe life of gas facilities. The authors analyzed the literature data on new options and technical solutions for the use of ultrasonic methods in the measurement of the thickness of a metal surface.


2021 ◽  
Vol 64 (11) ◽  
pp. 793-801
Author(s):  
R. R. Kantyukov ◽  
D. N. Zapevalov ◽  
R. K. Vagapov

At the present stage of gas field development, the products of many mining facilities have increased content of corrosive CO2 . The corrosive effect of CO2 on steel equipment and pipelines is determined by the conditions of its use. CO2 has a potentially wide range of usage at oil and gas facilities for solving technological problems (during production, transportation, storage, etc.). Simulation tests and analysis were carried out to assess the corrosion effect of CO2 on typical steels (carbon, low-alloy and alloyed) used at field facilities. Gas production facilities demonstrate several corrosion formation zones: lower part of the pipe (when moisture accumulates) and top of the pipe (in case of moisture condensation). The authors have analyzed the main factors influencing the intensity of carbon dioxide corrosion processes at hydrocarbon production with CO2 , its storage and use for various technological purposes. The main mechanism for development of carbon dioxide corrosion is presence/condensation of moisture, which triggers the corrosion process, including the formation of local defects (pits, etc.). X-ray diffraction was used for the analysis of corrosion products formed on the steel surface, which can have different protective characteristics depending on the phase state (amorphous or crystalline).


Sign in / Sign up

Export Citation Format

Share Document