A 108km2 Compressive Sensing Processing Trial

2021 ◽  
Author(s):  
Dustin Blymyer ◽  
Klaas Koster ◽  
Graeme Warren

Abstract Summary Compressive sensing (CS) of seismic data is a new style of seismic acquisition whereby the data are recorded on a pseudorandom grid rather than along densely sampled lines in a conventional design. A CS design with a similar station density will generally yield better quality data at a similar cost compared to a conventional design, whereas a CS design with a lower station density will reduce costs while retaining quality. Previous authors (Mosher, 2014) have shown good results from CS surveys using proprietary methods for the design and processing. In this paper we show results obtained using commercially available services based on published algorithms (Lopez, 2016). This is a necessary requirement for adoption of CS by our industry. This report documents the results of a 108km2 CS acquisition and processing trial. The acquisition and processing were specifically designed to establish whether CS can be used for suppression of backscattered, low velocity, high frequency surface waves. We demonstrate that CS data can be reconstructed by a commercial contractor and that the suppression of backscattered surface waves is improved by using CS receiver gathers reconstructed to a dense shot grid. We also show that CS acquisition is a reliable alternative to conventional acquisition from which high-quality subsurface images can be formed.

Geophysics ◽  
1964 ◽  
Vol 29 (5) ◽  
pp. 721-732 ◽  
Author(s):  
Eduard J. Douze

Deep‐well measurements at Grapevine, Texas; Hobart, Oklahoma; and Orlando, Florida, show that the noise is composed of surface waves that decrease in amplitude with depth. At Hobart, a low‐velocity wave guide contains wave‐guided noise. Fundamental and higher mode Rayleigh waves appear to be present in the noise at each site. The amplitudes of incident P waves depend on the depth at which the deep‐well seismometer is operated. High‐frequency P waves from quarry blasts are clearly visible in recordings from the deep‐well seismometer because the high‐frequency noise is suppressed at depth.


2014 ◽  
Vol 54 (2) ◽  
pp. 496
Author(s):  
Jamie Shaw ◽  
Matt Silverman ◽  
Geoff Dunn ◽  
Katrina O'Mara

Recent advances in the acquisition of onshore seismic data without cables have greatly reduced impacts on environmental and heritage values and increased recording efficiency. Onshore oil and gas exploration has expanded significantly across Australia. As a result, the need to gather quality data while reducing the environmental, social, and safety impacts of the activities has driven innovation in exploration technologies. In WA, exploration permits are granted for areas that include privately held farm land, pastoral leases or unallocated crown land. This can result in tensions between exploration companies, their contractors, and land holders. Cable-less seismic data acquisition systems provide significant opportunities to reduce the environmental, community, and safety impacts. Cable-less systems typically require significantly fewer trips along the acquisition line, considerably reducing the likelihood of negative impacts on plants, animals, and soils in the area. Other benefits include reducing fuel consumption, vehicle and traffic movement and the risk of injury to the seismic crew associated with the deployment of cables. This extended abstract reviews the recent use of a cable-less system for Fleet Resources’ seismic acquisition conducted by Terrex Seismic in the Carnarvon Basin, WA, demonstrating the environmental, social, and safety benefits compared with traditional cabled systems for both 3D and 2D seismic programs. This extended abstract also draws on the experiences of Terrex’s use of the technology on behalf of UIL Energy and it explores the opportunities for capturing these benefits during the preparation of environmental and safety plans for regulatory approval.


2021 ◽  
Author(s):  
Adam Cygal ◽  
Michał Stefaniuk ◽  
Anna Kret

AbstractThis article presents the results of an integrated interpretation of measurements made using Audio-Magnetotellurics and Seismic Reflection geophysical methods. The obtained results were used to build an integrated geophysical model of shallow subsurface cover consisting of Cenozoic deposits, which then formed the basis for a detailed lithological and tectonic interpretation of deeper Mesozoic sediments. Such shallow covers, consisting mainly of glacial Pleistocene deposits, are typical for central and northern Poland. This investigation concentrated on delineating the accurate geometry of Obrzycko Cenozoic graben structure filled with loose deposits, as it was of great importance to the acquisition, processing and interpretation of seismic data that was to reveal the tectonic structure of the Cretaceous and Jurassic sediments which underly the study area. Previously, some problems with estimation of seismic static corrections over similar grabens filled with more recent, low-velocity deposits were encountered. Therefore, a novel approach to estimating the exact thickness of such shallow cover consisting of low-velocity deposits was applied in the presented investigation. The study shows that some alternative geophysical data sets (such as magnetotellurics) can be used to significantly improve the imaging of geological structure in areas where seismic data are very distorted or too noisy to be used alone


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaochun Wang ◽  
Hans Thybo ◽  
Irina M. Artemieva

AbstractAll models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp > 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp < 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.


2020 ◽  
Vol 91 (4) ◽  
pp. 2127-2140 ◽  
Author(s):  
Glenn Thompson ◽  
John A. Power ◽  
Jochen Braunmiller ◽  
Andrew B. Lockhart ◽  
Lloyd Lynch ◽  
...  

Abstract An eruption of the Soufrière Hills Volcano (SHV) on the eastern Caribbean island of Montserrat began on 18 July 1995 and continued until February 2010. Within nine days of the eruption onset, an existing four-station analog seismic network (ASN) was expanded to 10 sites. Telemetered data from this network were recorded, processed, and archived locally using a system developed by scientists from the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program (VDAP). In October 1996, a digital seismic network (DSN) was deployed with the ability to capture larger amplitude signals across a broader frequency range. These two networks operated in parallel until December 2004, with separate telemetry and acquisition systems (analysis systems were merged in March 2001). Although the DSN provided better quality data for research, the ASN featured superior real-time monitoring tools and captured valuable data including the only seismic data from the first 15 months of the eruption. These successes of the ASN have been rather overlooked. This article documents the evolution of the ASN, the VDAP system, the original data captured, and the recovery and conversion of more than 230,000 seismic events from legacy SUDS, Hypo71, and Seislog formats into Seisan database with waveform data in miniSEED format. No digital catalog existed for these events, but students at the University of South Florida have classified two-thirds of the 40,000 events that were captured between July 1995 and October 1996. Locations and magnitudes were recovered for ∼10,000 of these events. Real-time seismic amplitude measurement, seismic spectral amplitude measurement, and tiltmeter data were also captured. The result is that the ASN seismic dataset is now more discoverable, accessible, and reusable, in accordance with FAIR data principles. These efforts could catalyze new research on the 1995–2010 SHV eruption. Furthermore, many observatories have data in these same legacy data formats and might benefit from procedures and codes documented here.


2012 ◽  
Vol 707 ◽  
pp. 482-495 ◽  
Author(s):  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

AbstractThe classical Schlichting boundary layer theory is extended to account for the excitation of generalized surface waves in the frequency and velocity amplitude range commonly used in microfluidic applications, including Rayleigh and Sezawa surface waves and Lamb, flexural and surface-skimming bulk waves. These waves possess longitudinal and transverse displacements of similar magnitude along the boundary, often spatiotemporally out of phase, giving rise to a periodic flow shown to consist of a superposition of classical Schlichting streaming and uniaxial flow that have no net influence on the flow over a long period of time. Correcting the velocity field for weak but significant inertial effects results in a non-vanishing steady component, a drift flow, itself sensitive to both the amplitude and phase (prograde or retrograde) of the surface acoustic wave propagating along the boundary. We validate the proposed theory with experimental observations of colloidal pattern assembly in microchannels filled with dilute particle suspensions to show the complexity of the boundary layer, and suggest an asymptotic slip boundary condition for bulk flow in microfluidic applications that are actuated by surface waves.


Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Chunying Yang ◽  
Wenchuang Wang

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, ”mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tested the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represent the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that mode-kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions are also dispersive. The scattered surface wave has a new dispersion pattern different to that of the entire record. Diagonal loading was introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter was applied to the results of azimuthal MUSIC, and phase iterations were unwrapped in a fast and stable manner. Aliased surface waves and body waves were separated during this process. Overall, field data demonstrate that azimuthal MUSIC and phase-matched filters can successfully separate aliased surface waves.


2016 ◽  
Vol 11 (1) ◽  
pp. 23-33
Author(s):  
Maxim Golubev ◽  
Andrey Shmakov

The work presents the results of application of panoramic interferential technique which is based on elastic layers (sensors) usage to obtain pressure distribution on the flat plate having sharp leading edge. Experiments were done in supersonic wind tunnel at Mach number M = 4. Sensitivity and response time are shown to be enough to register pressure pulsation against standing and traveling sensor surface waves. Applying high-frequency image acquiring is demonstrated to make possible to distinguish at visualization images high-speed disturbances propagating in the boundary layer from low-speed surface waves


Sign in / Sign up

Export Citation Format

Share Document