A Success Story of Critical Data Gathering During the Development Phase of Extreme ERD Well Drilling

2021 ◽  
Author(s):  
Atul Kumar Anurag ◽  
Adel Alkatheeri ◽  
Alvaro Sainz ◽  
Khalid Javid ◽  
Yaxin Liu ◽  
...  

Abstract This paper discusses a holistic combination of advanced formation evaluation techniques with pressure testing and reservoir navigation services to mitigate uncertainty related challenges in real time and successfully drill & place ERD laterals targeting Jurassic carbonate reservoirs. A meticulously planned approach to navigate the well trajectory by tracking the desired properties, informed decision-making while drilling and accurate data acquisition for aiding appropriate selection and placement in-flow control device (ICD) in lower completion design and future reservoir management contributed to the success of these complex wells in carbonate reservoirs. The first well in this study, involved drilling and evaluating a long lateral section as single oil producer targeting a carbonate reservoir. While no tar presence was expected, a combination of density, neutron porosity and nuclear magnetic resonance (NMR) logs while drilling resulted in identifying a deficit NMR porosity when compared to density porosity. Deployment of a formation pressure testing while drilling (FPWD) tool enabled measurement of the formation mobility and validate the presence of a tar. Using the same combination of measurements in the subsequent wells for delineating the tar enabled accurate planning of injection wells on the periphery of the field. Approximately 3 days were saved compared to the first well where the drill string had to be POOH to run-in with FPWD service. Hence, having FPWD tool in the same string helped in confirming the formation mobility in real time to call for critical decision making like changing the well trajectory or calling an early TD. Across all the wells drilled in this field, the formation pressure, mobility and porosity measurements provided valuable input for optimum ICD placement and design. Successful identification of unexpected tar resulted in substantial rig time savings, accurate planning of asset utilization and added confidence in design and placement of lower completions by utilizing LWD data. Benefits of integrated data and services combination became clear for applications involving advanced reservoir characterization and enhanced well placement in complex carbonate reservoirs. From the offset wells, a tar was seen in deeper formations but the integration of LWD NMR and mobility data from this well confirmed the presence of a tar within the zone of interest. The study established a cost-effective workflow for mitigating uncertainties related to tar encountered while drilling extreme ERD laterals in an offshore environment where any lost time results in significant increase in expenditures during the development phase. A systematic approach to tackle these uncertainties along with acquisition of critical data for the design & placement of completion results in optimum production from the reserves.

2006 ◽  
Author(s):  
Ulrich Hahne ◽  
Aravindh Kaniappan ◽  
Jos Pragt ◽  
Arno Buysch

Author(s):  
Keith Sherringham ◽  
Bhuvan Unhelkar

For business decision making to occur, data needs to be converted to information, then to knowledge and rapidly to wisdom. Whilst Information Communication Technology (ICT) solutions facilitate business decision making, ICT has not always been effective in providing the critical “data to wisdom” conversion necessary for real-time decision making on any device anywhere anytime. This lack of effectiveness in real-time decision making has been further hampered by a dependence upon location and time. Mobile technologies provide an opportunity to enhance business decision making by freeing users from complex information management requirements and enabling real-time decision making on any device anywhere anytime. This chapter discusses the role of mobile technologies in real time decision making.


2011 ◽  
pp. 795-804
Author(s):  
Keith Sherringham ◽  
Bhuvan Unhelkar

For business decision making to occur, data needs to be converted to information, then to knowledge and rapidly to wisdom. Whilst Information Communication Technology (ICT) solutions facilitate business decision making, ICT has not always been effective in providing the critical “data to wisdom” conversion necessary for real-time decision making on any device anywhere anytime. This lack of effectiveness in real-time decision making has been further hampered by a dependence upon location and time. Mobile technologies provide an opportunity to enhance business decision making by freeing users from complex information management requirements and enabling real-time decision making on any device anywhere anytime. This chapter discusses the role of mobile technologies in real time decision making.


Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


2020 ◽  
Vol 34 (10) ◽  
pp. 13849-13850
Author(s):  
Donghyeon Lee ◽  
Man-Je Kim ◽  
Chang Wook Ahn

In a real-time strategy (RTS) game, StarCraft II, players need to know the consequences before making a decision in combat. We propose a combat outcome predictor which utilizes terrain information as well as squad information. For training the model, we generated a StarCraft II combat dataset by simulating diverse and large-scale combat situations. The overall accuracy of our model was 89.7%. Our predictor can be integrated into the artificial intelligence agent for RTS games as a short-term decision-making module.


Sign in / Sign up

Export Citation Format

Share Document