Decarbonization and Improved Energy Efficiency Using a Novel Nanocomposite Surface Treatment

2021 ◽  
Author(s):  
Matthew Nakatsuka ◽  
Basile Marco ◽  
Sumil Thapa ◽  
Alexander Ventura ◽  
Osvaldo Pascolini ◽  
...  

Abstract Fouling of heat exchanger equipment through the formation and attachment of hard scale, microbially induced corrosion (MIC) products, or particulate erosion is a serious challenge to reliable production in the oil and gas industry. Exchangers which become fouled in this way perform 15-30% worse than their rated ability, requiring either constant intervention to clean away biofilms, continuous injection of biocides and corrosion inhibitors, or the regular plugging of tubes to prevent leaks, representing a significant operating expense and billions of dollars in lost production time. When an exchanger is unable to provide sufficient heat due to tube fouling, additional sources of heating must be utilized to make up for this deficit and to ensure that facility processes remain within design allowances. This need for supplemental heating is a significant source of carbon emissions in the industry and represents a significant obstacle towards decarbonization efforts. However, it also represents an economically attractive way to simultaneously lower emissions while also lowering a producer's cost per barrel. This work describes an alternate strategy to control and prevent fouling in heat exchangers, through the one-time application of an omniphobic (water- and oil-repelling) nano-surface treatment. Once applied to a heat exchanger, the extremely smooth and low-surface energy material greatly reduces the ability of MIC-causing bacteria to deposit and adhere to the surface. Because it imparts functionality to the surface itself, rather than simply function as a physical barrier, it enables long lasting protection which was validated under laboratory conditions in a pressurized autoclave, as well as two pilot demonstrations. Results from both the laboratory and field evaluations of the treatment's promise showed that treated surfaces showed a corrosion rate over 36-times lower when compared to untreated surfaces, while also completely arresting the formation of corrosion pitting, tube fouling, and erosion of the tube interior. These field-validated results were then applied to the observed heating deficit of a proposed deployment site, resulting in calculated carbon emissions savings of up to 17,000 Tons CO2 per year.

2019 ◽  
Vol 11 (3) ◽  
pp. 523-551 ◽  
Author(s):  
Sani Damamisau Mohammed

Purpose Carbon emissions from gas flaring in the Nigerian oil and gas industry are both a national and international problem. Nigerian government policies to eliminate the problem 1960-2016 yielded little or no results. The Kyoto Protocol (KP) provides Clean Development Mechanism (CDM) as an international market-based mechanism to reducing global carbon emissions. Therefore, the purpose of this paper is to analytically highlight the potentials of CDM in eliminating carbon emissions in the Nigerian oil and gas industry. Design/methodology/approach This paper reviewed the historical background of Kyoto protocol, Nigerian Government policies to eliminating gas flaring in its oil and gas industry 1960-2016 and CDM projects in the industry. The effectiveness of the policies and CDM projects towards ending this problem were descriptively analysed. Findings Government policies towards eliminating gas flaring with its attendant carbon emissions appeared not to be yielding the desired results. However, projects registered under CDM in the industry looks effective in ending the problem. Research limitations/implications Therefore, the success recorded by CDM projects has the policy implication of encouraging Nigeria to engage on establishing more CDM projects that ostensibly proved effective in reducing CO2 emissions through gas flaring reductions in its oil and gas industry. Apparent effectiveness of studied CDM should provide a way forward for the country in eliminating gas flaring in its oil and gas industry which is also a global menace. Nigeria could achieve this by providing all needed facilitation to realising more CDM investments. Practical implications CDM as a policy has proved effective in eliminating gas flaring in the Nigerian oil and gas industry. The government should adopt this international policy to achieve more gas flaring reductions. Social implications Social problems of respiratory diseases, water pollution and food shortage among others due to gas flaring are persisting in oil and gas producing areas as government policies failed to end the problem. CDM projects in the industry have proved effective in eliminating the problem, thus improving the social welfare of the people and ensuring sustainable development. Originality/value The paper analysed the effectiveness of Nigerian Government policies and an international market-based mechanism towards ending gas flaring in its oil and gas industry.


2010 ◽  
Vol 50 (2) ◽  
pp. 698
Author(s):  
Paul Travers

The various LNG projects in Queensland presented industry and traditional owners with a unique set of circumstances. On the one hand, LNG proponents were required to engage individually with traditional owner groups regarding cultural heritage. On the other hand, traditional owner groups were dealing with a variety of LNG proponents each seeking agreement about the same thing but in different ways. The paper examines this issue, considers a number of the pitfalls, and asks whether there is a case for standardising the management of cultural heritage. The current review of the Commonwealth Aboriginal and Torres Strait Islander Heritage Protection Act 1984 appears to support this approach. This paper will also look at the various ways cultural heritage has been managed in Queensland, as well as in other states and territories, and assesses whether there really is a better way for proponents in the oil and gas industry to manage this issue. Paul Travers was responsible for developing Queensland’s Aboriginal Cultural Heritage Act 2003. He also drafted the Aboriginal cultural heritage duty of care and cultural heritage management guidelines under the legislation. He has worked with LNG proponents and traditional owners in relation to LNG projects in Queensland. He brings an interesting and unique take on the essential elements of successful cultural heritage management.


Author(s):  
Ho Minh Kha ◽  
Nguyen Thanh Nam ◽  
Vo Tuyen ◽  
Nguyen Tan Ken

The gas-liquid cylindrical cyclone (GLCC) separators is a fairly new technology for the oil and gas industry. The current GLCC separator, a potential alternative for the conventional one, was studied, developed, and patented by Chevron company and Tulsa University (USA). It is used for replacing the traditional separators that have been used over the last 100 years. In addition, it is significantly attracted to petroleum companies in recent years because of the effect of the oil world price. However, the behavior of phases in the instrument is very rapid, complex, and unsteady, which may cause the difficulty of enhancing the performance of the separation phases. The multiple recent research shows that the inlet geometry is probably the most critical element that influences directly to the performance of separation of phases. Though, so far, most of the studies of GLCC separator were limited with the one inlet model. The main target of the current study is to deeply understand the effect of different geometrical configurations of the circular inlet on performances of GLCC by the experimental method for two phases flow (gas-liquid). Two different inlet configurations are constructed, namely: One circular inlet and two symmetric circular inlets. As a result, we propose the use of two symmetric circular inlets to enhance separator efficiency because of their effects.


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 368 ◽  
Author(s):  
Antoine Rauzy ◽  
Yang

In this article, we propose decision diagram algorithms to extract minimal cutsets of finite degradation models. Finite degradation models generalize and unify combinatorial models used to support probabilistic risk, reliability and safety analyses (fault trees, attack trees, reliability block diagrams…). They formalize a key idea underlying all risk assessment methods: states of the models represent levels of degradation of the system under study. Although these states cannot be totally ordered, they have a rich algebraic structure that can be exploited to extract minimal cutsets of models, which represent the most relevant scenarios of failure. The notion of minimal cutsets we introduce here generalizes the one defined for fault trees. We show how algorithms used to calculate minimal cutsets can be lifted up to finite degradation models, thanks to a generic decomposition theorem and an extension of the binary decision diagrams technology. We discuss the implementation and performance issues. Finally, we illustrate the interest of the proposed technology by means of the use case stemmed from the oil and gas industry.


2021 ◽  
Vol 61 (2) ◽  
pp. 347
Author(s):  
Simon Molyneux

The petroleum (oil, gas and LNG) business environment in 2020 was adverse. Two factors disrupted the foundations of the global oil and gas industry. First, the COVID-19 global pandemic caused an unprecedented reduction of demand that combined with high levels of production resulted in oversupply of oil, gas and LNG. This gap between supply and demand resulted in a collapse in commodity prices, reduced revenues and cancelling or deferral of investment. Second, societal awareness of the impact of climate change on planet Earth increased. Pressure to reduce carbon emissions and a concomitant societal-shift against carbon-emissions intensive petroleum-based forms of energy generation intensified. Many major players in the petroleum industry re-framed their strategies to focus on energy supply in general and in some cases plan to cease their exploration, development and production activities in the coming decades. In Australia, in part global factors manifested in the deferral of investment decisions on three LNG investments. The Australian Government signalled that gas developments would be a critical part of Australia’s post-COVID recovery and that management of abandonment and decommissioning liabilities would be a factor in the approval of transactions leading to a change in ownership. This paper will describe each of the factors faced by the industry in 2020 and frame the issues facing the petroleum industry in 2021 and beyond.


2021 ◽  
Author(s):  
Philippe Herve

Abstract The oil and gas sector is facing a changing market with new pressures to which it must learn to adapt. One of the biggest changes in expectations is the increased focus being placed on carbon emissions. Many consumers, investors, and lawmakers see reforms to the oil and gas industry as one of the most important avenues toward reducing carbon emissions and curbing climate change, and accordingly, a large number of companies have already made ambitious pledges towards carbon neutrality. New technologies may offer the best avenue for oil and gas companies to reduce their carbon emissions and meet those neutrality goals. Digital technologies—and in particular, artificial intelligence—can aid in decarbonization even with relatively small investments, primarily by enabling large increases in efficiency and reducing unscheduled downtime and the need for flaring. This paper discusses how artificial intelligence-powered predictive maintenance can be applied to reduce carbon emissions, and a case study illustrating a real-world deployment of this technology.


RSC Advances ◽  
2019 ◽  
Vol 9 (16) ◽  
pp. 9313-9322 ◽  
Author(s):  
Chunkai Fu ◽  
Jianjia Yu ◽  
Ning Liu

CO2 foam is regarded as a promising technology and widely used in the oil and gas industry, not only to improve oil production, but also to mitigate carbon emissions through their capture.


2021 ◽  
Author(s):  
Marat Dulkarnaev ◽  
Nadir Husein ◽  
Evgeny Malyavko ◽  
Vladimir Liss ◽  
Viacheslav Bolshakov ◽  
...  

Abstract The new economic conditions characterised by the instability in the global oil and gas industry push market players to search for profitable and efficient ways of developing oil and gas deposits. One of the key opportunities is Enhanced Oil Recovery projects in hard-to-recover reservoirs and formations. When planning the entire scope of development operations, well interventions and surveys, it is important to follow a strategy that would help successfully overcome the geological and engineering challenges facing the operators. In this project, a geological feasibility study of the field development management was conducted with regards to the one formation of the Yuzhno-Vyintoyskoye field based on the data obtained using marker-based production surveillance in horizontal wells and flow simulation.


Author(s):  
Emmanuel David

This chapter examines how Women of the Storm responded to the BP oil spill in 2010. No longer an emergent group, Women of the Storm’s structure was in place and thus it demonstrated organizational adaptation, shifting its goals more so than its organizational structure. The chapter discusses the group’s Be the One campaign, a public service announcement video and accompanying petition seeking increased funding for coastal restoration. The chapter continues by discussing controversy that arose when critics suggested that the group had ties to the oil and gas industry, and it relates the fallout as well as the group’s rebuttal. The chapter ends by considering the group’s third trip to Washington to show support of post-BP legislation known as the RESPOND Act, which would speed up the oil and gas revenue sharing measures that were achieved, in part, as a result of the group’s previous trips to Washington.


Sign in / Sign up

Export Citation Format

Share Document