Reconstruction of Missing Segments in Well Data History Using Data Analytics

2021 ◽  
Author(s):  
Yuanjun Li ◽  
Roland Horne ◽  
Ahmed Al Shmakhy ◽  
Tania Felix Menchaca

Abstract The problem of missing data is a frequent occurrence in well production history records. Due to network outage, facility maintenance or equipment failure, the time series production data measured from surface and downhole gauges can be intermittent. The fragmentary data are an obstacle for reservoir management. The incomplete dataset is commonly simplified by omitting all observations with missing values, which will lead to significant information loss. Thus, to fill the missing data gaps, in this study, we developed and tested several missing data imputation approaches using machine learning and deep learning methods. Traditional data imputation methods such as interpolation and counting most frequent values can introduce bias to the data as the correlations between features are not considered. Thus, in this study, we investigated several multivariate imputation algorithms that use the entire set of available data streams to estimate the missing values. The methods use a full suite of well measurements, including wellhead and downhole pressures, oil, water and gas flow rates, surface and downhole temperatures, choke settings, etc. Any parameter that has gaps in its recorded history can be imputed from the other available data streams. The models were tested on both synthetic and real datasets from operating Norwegian and Abu Dhabi reservoirs. Based on the characteristics of the field data, we introduced different types of continuous missing distributions, which are the combinations of single-multiple missing sections in a long-short time span, to the complete dataset. We observed that as the missing time span expands, the stability of the more successful methods can be kept to a threshold of 30% of the entire dataset. In addition, for a single missing section over a shorter period, which could represent a weather perturbation, most methods we tried were able to achieve high imputation accuracy. In the case of multiple missing sections over a longer time span, which is typical of gauge failures, other methods were better candidates to capture the overall correlation in the multivariate dataset. Most missing data problems addressed in our industry focus on single feature imputation. In this study, we developed an efficient procedure that enables fast reconstruction of the entire production dataset with multiple missing sections in different variables. Ultimately, the complete information can support the reservoir history matching process, production allocation, and develop models for reservoir performance prediction.

2021 ◽  
Vol 7 ◽  
pp. e619
Author(s):  
Khaled M. Fouad ◽  
Mahmoud M. Ismail ◽  
Ahmad Taher Azar ◽  
Mona M. Arafa

The real-world data analysis and processing using data mining techniques often are facing observations that contain missing values. The main challenge of mining datasets is the existence of missing values. The missing values in a dataset should be imputed using the imputation method to improve the data mining methods’ accuracy and performance. There are existing techniques that use k-nearest neighbors algorithm for imputing the missing values but determining the appropriate k value can be a challenging task. There are other existing imputation techniques that are based on hard clustering algorithms. When records are not well-separated, as in the case of missing data, hard clustering provides a poor description tool in many cases. In general, the imputation depending on similar records is more accurate than the imputation depending on the entire dataset's records. Improving the similarity among records can result in improving the imputation performance. This paper proposes two numerical missing data imputation methods. A hybrid missing data imputation method is initially proposed, called KI, that incorporates k-nearest neighbors and iterative imputation algorithms. The best set of nearest neighbors for each missing record is discovered through the records similarity by using the k-nearest neighbors algorithm (kNN). To improve the similarity, a suitable k value is estimated automatically for the kNN. The iterative imputation method is then used to impute the missing values of the incomplete records by using the global correlation structure among the selected records. An enhanced hybrid missing data imputation method is then proposed, called FCKI, which is an extension of KI. It integrates fuzzy c-means, k-nearest neighbors, and iterative imputation algorithms to impute the missing data in a dataset. The fuzzy c-means algorithm is selected because the records can belong to multiple clusters at the same time. This can lead to further improvement for similarity. FCKI searches a cluster, instead of the whole dataset, to find the best k-nearest neighbors. It applies two levels of similarity to achieve a higher imputation accuracy. The performance of the proposed imputation techniques is assessed by using fifteen datasets with variant missing ratios for three types of missing data; MCAR, MAR, MNAR. These different missing data types are generated in this work. The datasets with different sizes are used in this paper to validate the model. Therefore, proposed imputation techniques are compared with other missing data imputation methods by means of three measures; the root mean square error (RMSE), the normalized root mean square error (NRMSE), and the mean absolute error (MAE). The results show that the proposed methods achieve better imputation accuracy and require significantly less time than other missing data imputation methods.


2021 ◽  
pp. 147592172110219
Author(s):  
Huachen Jiang ◽  
Chunfeng Wan ◽  
Kang Yang ◽  
Youliang Ding ◽  
Songtao Xue

Wireless sensors are the key components of structural health monitoring systems. During the signal transmission, sensor failure is inevitable, among which, data loss is the most common type. Missing data problem poses a huge challenge to the consequent damage detection and condition assessment, and therefore, great importance should be attached. Conventional missing data imputation basically adopts the correlation-based method, especially for strain monitoring data. However, such methods often require delicate model selection, and the correlations for vehicle-induced strains are much harder to be captured compared with temperature-induced strains. In this article, a novel data-driven generative adversarial network (GAN) for imputing missing strain response is proposed. As opposed to traditional ways where correlations for inter-strains are explicitly modeled, the proposed method directly imputes the missing data considering the spatial–temporal relationships with other strain sensors based on the remaining observed data. Furthermore, the intact and complete dataset is not even necessary during the training process, which shows another great superiority over the model-based imputation method. The proposed method is implemented and verified on a real concrete bridge. In order to demonstrate the applicability and robustness of the GAN, imputation for single and multiple sensors is studied. Results show the proposed method provides an excellent performance of imputation accuracy and efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishith Kumar ◽  
Md. Aminul Hoque ◽  
Masahiro Sugimoto

AbstractMass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA.


2020 ◽  
Vol 69 ◽  
pp. 1255-1285
Author(s):  
Ricardo Cardoso Pereira ◽  
Miriam Seoane Santos ◽  
Pedro Pereira Rodrigues ◽  
Pedro Henriques Abreu

Missing data is a problem often found in real-world datasets and it can degrade the performance of most machine learning models. Several deep learning techniques have been used to address this issue, and one of them is the Autoencoder and its Denoising and Variational variants. These models are able to learn a representation of the data with missing values and generate plausible new ones to replace them. This study surveys the use of Autoencoders for the imputation of tabular data and considers 26 works published between 2014 and 2020. The analysis is mainly focused on discussing patterns and recommendations for the architecture, hyperparameters and training settings of the network, while providing a detailed discussion of the results obtained by Autoencoders when compared to other state-of-the-art methods, and of the data contexts where they have been applied. The conclusions include a set of recommendations for the technical settings of the network, and show that Denoising Autoencoders outperform their competitors, particularly the often used statistical methods.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Shahidul Islam Khan ◽  
Abu Sayed Md Latiful Hoque

Abstract In data analytics, missing data is a factor that degrades performance. Incorrect imputation of missing values could lead to a wrong prediction. In this era of big data, when a massive volume of data is generated in every second, and utilization of these data is a major concern to the stakeholders, efficiently handling missing values becomes more important. In this paper, we have proposed a new technique for missing data imputation, which is a hybrid approach of single and multiple imputation techniques. We have proposed an extension of popular Multivariate Imputation by Chained Equation (MICE) algorithm in two variations to impute categorical and numeric data. We have also implemented twelve existing algorithms to impute binary, ordinal, and numeric missing values. We have collected sixty-five thousand real health records from different hospitals and diagnostic centers of Bangladesh, maintaining the privacy of data. We have also collected three public datasets from the UCI Machine Learning Repository, ETH Zurich, and Kaggle. We have compared the performance of our proposed algorithms with existing algorithms using these datasets. Experimental results show that our proposed algorithm achieves 20% higher F-measure for binary data imputation and 11% less error for numeric data imputations than its competitors with similar execution time.


2021 ◽  
Author(s):  
Nwamaka Okafor

IoT sensors are gaining more popularity in the environmental monitoring space due to their relatively small size, cost of acquisition and ease of installation and operation. They are becoming increasingly important<br>supplement to traditional monitoring systems, particularly for in-situ based monitoring. However, data collection based on IoT sensors are often plagued with missing values usually occurring as a result of sensor faults, network failures, drifts and other operational issues. Several imputation strategies have been proposed for handling missing values in various application domains. This paper examines the performance of different imputation techniques including Multiple Imputation by Chain Equations (MICE), Random forest based imputation (missForest) and K-Nearest Neighbour (KNN) for handling missing values on sensor networks deployed for the quantification of Green House Gases(GHGs). Two tasks were conducted: first, Ozone (O3) and NO2/O3 concentration data collected using Aeroqual and Cairclip sensors respectively over a six months data collection period were corrupted by removing data intervals at different missing periods (p) where p 2 f1day; 1week; 2weeks; 1monthg and also at random points on the dataset at varying proportion (r) where r 2 f5%; 10%; 30%; 50%; 70%g. The missing data were then filled using the different imputation strategies and their imputation accuracy calculated. Second, the performance of sensor calibration by different regression models including Multi Linear Regression (MLR), Decision Tree (DT), Random Forest (RF) and XGBoost (XGB) trained on the different imputed datasets were evaluated. The analysis showed the MICE technique to outperform the others in imputing the missing values on both the O3 and NO2/O3 datasets when missingness was introduced over periods p. MissForest, however, outperformed the rest when missingness was introduced as randomly occuring point errors. While the analysis demonstrated the effects of missing and imputed data on sensor calibration, experimental results showed that a simple model on the imputed dataset can achieve state of-the-art result on in-situ sensor calibration, improving the data quality of the sensor.


2021 ◽  
Author(s):  
Nwamaka Okafor ◽  
Declan Delaney

IoT sensors are becoming increasingly important supplement to traditional monitoring systems, particularly for in-situ based monitoring. However, data collection based on IoT sensors are often plagued with missing values usually occurring as a result of sensor faults, network failures, drifts and other operational issues. <br>


2021 ◽  
Author(s):  
Nishith Kumar ◽  
Md. Hoque ◽  
Masahiro Sugimoto

Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomics analyses. It yields a high dimensional large scale matrix (samples × metabolites) of quantified data that often contain missing cell in the data matrix as well as outliers which originate from several reasons, including technical and biological sources. Although, in the literature, several missing data imputation techniques can be found, however all the conventional existing techniques can only solve the missing value problems but not relieve the problems of outliers. Therefore, outliers in the dataset, deteriorate the accuracy of imputation. To overcome both the missing data imputation and outlier’s problem, here, we developed a new kernel weight function based missing data imputation technique (proposed) that resolves both the missing values and outliers. We evaluated the performance of the proposed method and other nine conventional missing imputation techniques using both artificially generated data and experimentally measured data analysis in both absence and presence of different rates of outliers. Performance based on both artificial data and real metabolomics data indicates that our proposed kernel weight based missing data imputation technique is a better performer than some existing alternatives. For user convenience, an R package of the proposed kernel weight based missing value imputation technique has been developed which is available at https://github.com/NishithPaul/tWLSA .


Author(s):  
C. V. S. R. Syavasya ◽  
M. A. Lakshmi

With the rapid explosion of the data streams from the applications, ensuring accurate data analysis is essential for effective real-time decision making. Nowadays, data stream applications often confront the missing values that affect the performance of the classification models. Several imputation models have adopted the deep learning algorithms for estimating the missing values; however, the lack of parameter and structure tuning in classification, degrade the performance for data imputation. This work presents the missing data imputation model using the adaptive deep incremental learning algorithm for streaming applications. The proposed approach incorporates two main processes: enhancing the deep incremental learning algorithm and enhancing deep incremental learning-based imputation. Initially, the proposed approach focuses on tuning the learning rate with both the Adaptive Moment Estimation (Adam) along with Stochastic Gradient Descent (SGD) optimizers and tuning the hidden neurons. Secondly, the proposed approach applies the enhanced deep incremental learning algorithm to estimate the imputed values in two steps: (i) imputation process to predict the missing values based on the temporal-proximity and (ii) generation of complete IoT dataset by imputing the missing values from both the predicted values. The experimental outcomes illustrate that the proposed imputation model effectively transforms the incomplete dataset into a complete dataset with minimal error.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 698 ◽  
Author(s):  
Klemen Kenda ◽  
Filip Koprivec ◽  
Dunja Mladenić

In this study an algorithm for missing data imputation is presented. The algorithm uses measurements from neighboring sensors to estimate the missing values. Data-driven approach is used and methodology chooses the optimal available combination of modeling algorithm and available measurements to produce an estimate from the model with lowest error. The methodology was tested on Ljubljana polje aquifer data and has produced close to perfect results.


Sign in / Sign up

Export Citation Format

Share Document