The Application of Computed Tomography Scanning and Nuclear Magnetic Resonance for Rock Typing of Polymineral Clastic Reservoirs

2021 ◽  
pp. 1-14
Author(s):  
Elizaveta Shvalyuk ◽  
Alexei Tchistiakov ◽  
Alexandr Kalugin

Summary The main objective of this study was to provide rock typing of the producing formation based on high-resolution computed tomography (CT) scanning and nuclear magnetic resonance (NMR) data in combination with routine core analyses results. The target formation is composed of a shallowing up sequence of clastic rocks. Siltstones in its base are gradually replaced by sandstones toward its top. Initially, only sandstones were considered as oil-bearing, while siltstones were considered as water-bearing based on saturation calculation by means of Archie’s equation (Archie 1942) with the same values of cementation and saturation exponent for the whole formation. However, follow-up well tests detected considerable oil inflow also from the base of the reservoir composed of siltstones. Therefore, better rock typing was needed to improve the initial saturation distribution calculation. An applied approach that was based on integrated analysis of rock microstructural characteristics and derived from the NMR and CT techniques and conventional properties used for reserves calculation appeared to be an effective tool for rock typing polymineral clastic reservoirs. Measuring porous network characteristics and conventional properties in the same core plug enables a confident correlation between all measured parameters. Consequently, rock typing of samples based on flow units’ microstructural characteristics derived from NMR and CT scanning has shown a very good consistency with each other. As a result, four rock types were distinguished within a formation, which were previously interpreted as a single rock type. The detailed rock typing of the reservoir allowed more accurate reserves calculation and involvement of additional intervals into the production. Besides porous media characterization, CT scanning proved to be an effective tool for detecting minerals, such as pyrite and carbonates, characterizing depositional environments. Increasing content of pyrite in siltstones, detected by CT scanning and X-ray fluorescence spectroscopy, indicates deeper and less oxic conditions, while the presence of carbonate shell debris indicates shallower, more oxic depositional settings. The NMR test results show that the NMR signal distribution is affected by both pore size distribution and mineralogical composition. An increase of pyrite content caused shifting of the T2 distribution to the lower values, while carbonate inclusions caused shifting of the T2 distribution to higher values relative to the other samples not affected by these mineral inclusions. Because NMR distribution is affected by multiple factors, applying Т2cutoff values alone for rock typing can lead to ambiguous interpretation. Applying CT scanning next to NMR data increases the reliability of rock typing. The proposed laboratory workflow, including a combination of nonhazardous and nondestructive tests, allowed reliable differentiation of the rock samples based on multiple parameters that were interpreted in relationship with each other. Because the designed laboratory test workflow enabled both justified separation of the samples by rock type and determination of parameters used for reserves calculation, it can be recommended for further application in polymineral clastic reservoirs. Because the proposed techniques are nondestructive, the same samples can be applied for multiple tests including special core analysis (or SCAL).

2021 ◽  
Author(s):  
◽  
Muhammad Ali Raza Anjum

<p>Nuclear Magnetic Resonance spectroscopy (NMR) is a powerful technique for rapid and efficient quantitation of compounds in chemical samples. NMR causes the nuclei in the molecules to resonate and various chemical arrangements appear as peaks in the Fourier spectrum of a free induction decay (FID). The spectral parameters elicited from the peaks serve as a fingerprint of the chemical components contained in the molecule. These fingerprints can be employed to understand the chemical structure.  Signal acquired from a NMR spectrometer is ideally modelled as a superposition of multiple damped complex exponentials (cisoids) in Additive White Gaussian Noise (AWGN). The number as well as the spectral parameters of the cisoids need to be estimated for characterisation of the underlying chemicals. The estimation, however, suffers from numerous difficulties in practice. These include: unknown number of cisoids, large signal length, large dynamic range, large peak density, and numerous distortions caused by experimental artefacts.  This thesis aims at the development of estimators that, in view of the above-mentioned practical features, are capable of rapid, high-resolution and apriori-information-free quantitation of NMR signals. Moreover, for the analytic evaluation of the performance of such estimators, the thesis aims to derive interpretable analytic results for the fundamental estimation theory tool for assessing the performance of an unbiased estimator: the Cramer Rao Lower Bound (CRLB). By such results, we mean those that analytically allow the determination, in terms of the CRLB, of the impact of the free model parameters on the estimator performance.  For the CRLB, we report analytic expressions on the variance of unbiased parameter estimates of damping factors, frequencies and complex amplitudes of an arbitrary number of damped cisoids embedded in AWGN. In addition to the CRLB, analytic expressions for the determinant and the condition number of the associated Fisher Information Matrix (FIM) are also reported. Further results, in similar order, are reported for two special cases of the damped cisosid model: the Magnetic Resonance Relaxometry model and the amplitude-only model (employed in quantitative NMR - qNMR). Some auxiliary results for the above-mentioned models are also presented, i.e., on the multiplicity of the eigenvalues and the factorisation of the characteristic polynomial associated with their respective FIMs.  These results have not been previously reported. The reported theoretical results successfully account for various physical and chemical phenomena observed in experimental NMR data, and quantify their impact on the accuracy of an unbiased estimator as a function of both model and experimental parameters, e.g., influence of prior knowledge, peak multiplicity, multiplet symmetry, solvent peak, carbon satellites, etc.  For rapid, high-resolution and apriori-information-free quantitation of NMR signals, a sub-band Steiglitz-McBride algorithm is reported. The developed algorithm directly converts the time-domain FID data into a table of estimated amplitudes, phases, frequencies and damping factors, without requiring any previous knowledge or pre-processing. A 2D sub-band Steiglitz-McBride algorithm, for the quantitation of 2D NMR data in a similar manner, is also reported. The performance of the developed algorithms is validated by their application to experimental data, which manifests that they outperform the state-of-the-art in terms of speed, resolution and apriori-information-free operation.</p>


1990 ◽  
Vol 68 (11) ◽  
pp. 2033-2038 ◽  
Author(s):  
Giovanna Barbarella ◽  
Massimo Luigi Capobianco ◽  
Luisa Tondelli ◽  
Vitaliano Tugnoli

The preferential protonation sites of the homo dimers deoxycytidylyl-(3′,5′)-deoxycytidine, thymidylyl-(3′,5′)-thymidine, and deoxyadenylyl-(3′,5′)-deoxyadenosine were established by nitrogen-15 and carbon-13 NMR in dimethyl sulfoxide, in the presence of varying amounts of CF3COOH. The nitrogen-15 NMR data show that in d(CpC) the capability of the two N3 nitrogens to accept the proton is slightly different. In d(TpT) and d(ApA) the protonation of the phosphate group leads to significant variations of the chemical shift of the carbons adjacent to phosphorus. Keywords: deoxydinucleotides, protonation, 15N and 13C NMR.


2007 ◽  
Vol 10 (06) ◽  
pp. 730-739 ◽  
Author(s):  
Genliang Guo ◽  
Marlon A. Diaz ◽  
Francisco Jose Paz ◽  
Joe Smalley ◽  
Eric A. Waninger

Summary In clastic reservoirs in the Oriente basin, South America, the rock-quality index (RQI) and flow-zone indicator (FZI) have proved to be effective techniques for rock-type classifications. It has long been recognized that excellent permeability/porosity relationships can be obtained once the conventional core data are grouped according to their rock types. Furthermore, it was also observed from this study that the capillary pressure curves, as well as the relative permeability curves, show close relationships with the defined rock types in the basin. These results lead us to believe that if the rock type is defined properly, then a realistic permeability model, a unique set of relative permeability curves, and a consistent J function can be developed for a given rock type. The primary purpose of this paper is to demonstrate the procedure for implementing this technique in our reservoir modeling. First, conventional core data were used to define the rock types for the cored intervals. The wireline log measurements at the cored depths were extracted, normalized, and subsequently analyzed together with the calculated rock types. A mathematical model was then built to predict the rock type in uncored intervals and in uncored wells. This allows the generation of a synthetic rock-type log for all wells with modern log suites. Geostatistical techniques can then be used to populate the rock type throughout a reservoir. After rock type and porosity are populated properly, the permeability can be estimated by use of the unique permeability/porosity relationship for a given rock type. The initial water saturation for a reservoir can be estimated subsequently by use of the corresponding rock-type, porosity, and permeability models as well as the rock-type-based J functions. We observed that a global permeability multiplier became unnecessary in our reservoir-simulation models when the permeability model is constructed with this technique. Consistent initial-water-saturation models (i.e., calculated and log-measured water saturations are in excellent agreement) can be obtained when the proper J function is used for a given rock type. As a result, the uncertainty associated with volumetric calculations is greatly reduced as a more accurate initial-water-saturation model is used. The true dynamic characteristics (i.e., the flow capacity) of the reservoir are captured in the reservoir-simulation model when a more reliable permeability model is used. Introduction Rock typing is a process of classifying reservoir rocks into distinct units, each of which was deposited under similar geological conditions and has undergone similar diagenetic alterations (Gunter et al. 1997). When properly classified, a given rock type is imprinted by a unique permeability/porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993). As a result, when properly applied, rock typing can lead to the accurate estimation of formation permeability in uncored intervals and in uncored wells; reliable generation of initial-water-saturation profile; and subsequently, the consistent and realistic simulation of reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993; Porras and Campos 2001; Jennings and Lucia 2001; Rincones et al. 2000; Soto et al. 2001) presented in the literature, two techniques (RQI/FZI and Winland's R35) appear to be used more widely than the others for clastic reservoirs (Gunter et al. 1997, Amaefule et al. 1993). In the RQI/FZI approach (Amaefule et al. 1993), rock types are classified with the following three equations: [equations]


1984 ◽  
Vol 22 (2) ◽  
pp. 113-122 ◽  
Author(s):  
D.Wayne Laster ◽  
Marshall R. Ball ◽  
Dixon M. Moody ◽  
Richard L. Witcofski ◽  
David L. Kelly

2014 ◽  
Vol 26 (06) ◽  
pp. 1450069 ◽  
Author(s):  
M. Periyasamy ◽  
R. Dhanasekaran

The aim of this work was to assess two issues concerning magnetic resonance imaging (MRI) including device functionality and image artifacts for the presence of ultra high frequency (UHF) radio frequency identification (RFID) devices in connection with 0.3 Tesla at 12.7 MHz MRI and computed tomography (CT) scanning. A total of 15 samples of RFID tags with two dissimilar sizes (wristband and ID card types) were tested. The tags were exposed to a several numbers of MR-imaging conditions during MRI examination and X-rays of CT scan. During the test, the tags were oriented in three different directions (axial, coronal and sagittal) pertaining to MRI system in order to encompass all possible situations with respect to the patient undergoing MRI and CT scanning, wearing a RFID tag on wrist. In addition to the device functionality test and imaging artifacts, we also analyzed the reading performance of the RFID reader considering significant factors in MRI scan area. We observed that the tags did not experience physical damage with its functionality remained unchanged even after MRI and CT scanning, and there was no modification in previously stored data as well. In addition, no evidence of artifact was observed in the acquired MR and CT images. Therefore, we can conclude that the use of passive UHF RFID tag is safe for a patient undergoing MRI at 0.3 T/12.7 MHz and CT scanning. However, the reading performance of the RFID reader got affected depending on whether the MRI machine was on or off and also by the angle of the reader antenna.


Sign in / Sign up

Export Citation Format

Share Document