Application of Transient- Multiphase-Flow Technology

1999 ◽  
Vol 51 (4) ◽  
Author(s):  
Dale Erickson ◽  
Michael Mai
Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1048
Author(s):  
Xipeng Guo ◽  
Joel Godinez ◽  
Nicholas J. Walla ◽  
Armin K. Silaen ◽  
Helmut Oltmann ◽  
...  

In a steel-refining ladle, the properties of manufactured steel can be notably degraded due to the presence of excessive inclusions. Stirring via gas injection through a porous plug is often used as part of the steel-refining process to reduce these inclusions. In this paper, 3D computational fluid dynamics (CFD) modeling is used to analyze transient multiphase flow and inclusion removal in a gas-stirred ladle. The effects of gas stirring with bubble-inclusion interaction are analyzed using the Euler–Euler approach for multiphase flow modeling, while the effects of inclusions aggregation and removal are modeled via a population balance model (PBM).


2018 ◽  
Author(s):  
Kanat Karatayev ◽  
Beibit Bissakayev ◽  
Tamer Saada ◽  
Benjamin Madeley ◽  
Alberto Brancolini ◽  
...  

2018 ◽  
Author(s):  
Kanat Karatayev ◽  
Beibit Bissakayev ◽  
Tamer Saada ◽  
Benjamin Madeley ◽  
Alberto Brancolini ◽  
...  

2021 ◽  
Author(s):  
Miguel Angel Cedeno

Abstract The unconventional resources development has grown tremendously as a result of the advancement in horizontal drilling technology coupled with hydraulic fracturing. However, as more wells are drilled and fractured close to each other, frac hits have become a major challenge in these wells. The aim of this work is to investigate the effect of nitrogen injection flow rate and pressure on unloading frac hits gas wells in transient multiphase flow. A numerical simulation model was created using a transient multiphase flow simulator to mimic the unloading process of frac hits by injecting nitrogen from the surface through the annulus section of the well. Many simulation cases were created and analyzed to comprehend the effect of the nitrogen injection rate and pressure on the unloading of frac hits. The model mimicked real field data from currently active well in the Eagle Ford Shale. The results showed that as the nitrogen injection pressure increases, the nitrogen volume and the time to unload the frac hits decrease. On the other hand, increasing the injection rate of nitrogen will increase the nitrogen volume required to unload the frac hits. In addition, the time to unload frac hits will be decreased as the nitrogen injection rate increases. These results indicate that the time required to unload frac hits will be minimized if higher flow rates of nitrogen were utilized. Nonetheless, the volume of nitrogen required to unload the frac hits will be maximized. An important observation to highlight is that the operators can save money by reducing the time for injecting nitrogen. This observation was verified when increasing the injection pressure in the frac hit well in the Eagle Ford Shale, the time of injection was reduced 20%. This study presents the effects of nitrogen injection flow rate and injection pressure for unloading frac hits in gas wells. Due to the lack of published studies about this topic, this work can serve as a practical guideline for unloading frac hits in gas wells.


Metals ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 146 ◽  
Author(s):  
Hua Zhang ◽  
Ronghua Luo ◽  
Qing Fang ◽  
Hongwei Ni ◽  
Xiao Song

Author(s):  
Aldo Costantini ◽  
Gioia Falcone ◽  
Geoffrey F. Hewitt ◽  
Claudio Alimonti

The fundamental understanding of the dynamic interactions between multiphase flow in the reservoir and that in the wellbore remains surprisingly weak. The classical way of dealing with these interactions is via inflow performance relationships (IPR’s), where the inflow from the reservoir is related to the pressure at the bottom of the well, which is a function of the multiphase flow behaviour in the well. Steady-state IPR’s are normally adopted, but their use may be erroneous when transient multiphase flow conditions occur. Transient multiphase flow in the wellbore causes problems in well test interpretation when the well is shut-in at surface and the bottomhole pressure is measured. Pressure build-up (PBU) data recorded during a test can be dominated by transient wellbore effects (e.g. phase change, flow reversal and re-entry of the denser phase into the producing zone), making it difficult to distinguish between true reservoir features and transient wellbore artefacts. This paper introduces a method to derive the transient IPR’s at bottomhole conditions in order to link the wellbore to the reservoir during PBU. A commercial numerical simulator was used to build a simplified reservoir model (single well, radial co-ordinates, homogeneous rock properties) using published data from a gas condensate field in the North Sea. In order to exclude wellbore effects from the investigation of the transient inflow from the reservoir, the simulation of the wellbore was omitted from the model. Rather than the traditional flow rate at surface conditions, bottomhole pressure was imposed to constrain the simulation. This procedure allowed the flow rate at the sand face to be different from zero during the early times of the PBU, even if the surface flow rate is equal to zero. As a result, a transient IPR at bottomhole conditions was obtained for the given field case and for a specific set of time intervals, time steps and bottomhole pressure. In order to validate the above simulation approach, a preliminary evaluation of the required experimental set-up was carried out. The set-up would allow the investigation of the dynamic interaction between the reservoir, the near-wellbore region and the well, represented by a pressured vessel, a cylindrical porous medium and a vertical pipe, respectively.


Sign in / Sign up

Export Citation Format

Share Document