Neuropilin 1 modulates TGF-β1-induced epithelial–mesenchymal transition in non-small cell lung cancer

2019 ◽  
Author(s):  
Zongli Ding ◽  
Wenwen Du ◽  
Zhe Lei ◽  
Yang Zhang ◽  
Jianjie Zhu ◽  
...  

Abstract Background: TGF-β1 signaling is a potent inducer of epithelial-mesenchymal transition (EMT) in various cancers. Our previous study has indicated that NRP1 was significantly up-regulated and acted as a vital promoter in the metastasis of non-small cell lung cancer (NSCLC). However, the function of NRP1 in regulation of TGF-β1-induced EMT and NSCLC cell migration and invasion remained unclear. Methods: The differential expression level of NRP1 was determined by RT-PCR analysis in human tissue samples with or without lymph node metastasis. Transwell assay and wound healing assay were conducted to determine cell ability of migration. Lentivirus-mediated stable knockdown and overexpression of NRP1 cell lines were constructed. Exogenous TGF-β1 stimulation, SIS3 treatment, western blot analysis and in vivo metastatic model were utilized to clarify the underlying regulatory mechanism. Results: Increased expression of NRP1 was found in metastatic NSCLC tissues and can promote NSCLC metastasis in vivo. Transwell assays, wound healing assay and western blot analysis showed that knockdown of NRP1 significantly inhibited TGF-β1-mediated EMT and migratory and invasive capabilities of A549 and H226 cells. Furthermore, overexpression of NRP1 could weak the decreased migratory and invasive capabilities with SIS3 treatment. Co-IP data showed that NRP1 can interact with TGFβRⅡ to induce EMT. Conclusion: This is the first time to report that NRP1 can modulate TGF-β1-induced EMT and cell migration and invasion in NSCLC.

2018 ◽  
Vol 45 (6) ◽  
pp. 2213-2224 ◽  
Author(s):  
Meng Zhao ◽  
Yahui Liu ◽  
Ran Liu ◽  
Jin Qi ◽  
Yongwang Hou ◽  
...  

Background/Aims: Cytokines are key players in tumorigenesis and are potential targets in cancer treatment. Although IL-6 has attracted considerable attention, interleukin 11 (IL-11), another member of the IL-6 family, has long been overlooked, and little is known regarding its specific function in non-small cell lung cancer (NSCLC). In this study, we explored IL-11’s role in NSCLC and the detailed mechanism behind it. Methods: Cell proliferation in response to IL-11 was determined by colony formation, BrdU incorporation and MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Cell motility was measured by Transwell and wound healing assays. NSCLC xenograft models were used to confirm oncogenic function of IL-11 in vivo. Immunohistochemical staining and western blot assay were performed to detect epithelial–mesenchymal transition (EMT) markers and cell signaling pathway alterations. Eighteen NSCLC patients and 5 normal lung samples were collected together with data from an online database to determine the link between IL-11 expression and malignant progression. Results: We observed that IL-11 was upregulated in NSCLC samples compared with normal tissue samples and correlated with poor prognosis. Data from in vitro and in vivo models indicated that IL-11 promotes cell proliferation and tumorigenesis. Cell migration and invasion were also enhanced by IL-11. Epithelial–mesenchymal transition (EMT) was also observed after IL-11 incubation. Furthermore, IL-11 activated AKT and STAT3 in our experimental models. In addition, we observed that hypoxia induced IL-11 expression in NSCLC cells. Deferoxamine (DFX) or dimethyloxalylglycine (DMOG) induced hypoxia-inducible factor 1-alpha (HIF1α) upregulation, which enhanced IL-11 expression in NSCLC cells. Conclusions: Taken together, our results indicate that IL-11 is an oncogene in NSCLC, and elucidating the mechanism behind it may provide insights for NSCLC treatment.


2021 ◽  
Author(s):  
Ling Wang ◽  
Lin Xiaolan ◽  
ZongSheng Jiang ◽  
Yanzi Sun ◽  
Yixuan Li ◽  
...  

Abstract Background: Forkhead box (FOX) gene family plays a critical role in regulating Epithelial-mesenchymal transition (EMT) program, and in which, FOXM1 can mediate multiple malignant process in many type of tumor cells. However, the modulate functions of FOXM1 on EMT in non-small-cell lung cancer (NSCLC) cells, especially the transcriptional function on E-cadherin coding gene CDH1 remains unclear. This article mainly focuses on FOXM1, exploring its mechanism in regulating EMT of NSCLC cells, and FOXM1 inhibitor thiostrepton’s effects in EMT intervention. Methods: Morphological changes of overexpressed cells were observed by HE staining. The effects of scratch test, Transwell chamber test and Western-blot analysis on cell migration and invasion ability and the expression of EMT-related markers were analyzed. Dual luciferin reporter enzyme assay and nuclear transcription factor immunoprecipitation assay (ChIP, immunofluorescence) revealed the transcriptional regulation of FOXM1 on EMT markers. MTT assay and clone formation assay were used to determine the effect of thiomycin on the viability of NSCLC cells and the ability of cell clone formation.Rusults: After overexpression of FOXM1, the cells showed intermediate epithelial-mesenchymal morphology, but not complete mesenchymal morphology, and their migration and invasion abilities were enhanced. The protein expression levels of N-cadherin,Snail1 and Vimentin were increased, while the expression levels of E-cadherin were decreased. On the contrary, knockdown of FOXM1 expression showed the opposite result. The double luciferin reporter enzyme assay showed that FOXM1 inhibited the luciferin reporter vector CDH1-2000-promoter. ChIP results confirmed that FOXM1 could bind endogenous to CDH1 gene promoter. In cells overexpressing FOXM1, knockdown of Snail further promotes FOXM1-mediated CDH1 transcription. MTT results and clone formation experiments showed that thiomycin had inhibitory effect on the proliferation of NSCLC cells. Morphological observation, cell migration assay and Transwell chamber assay showed that streptotin inhibited TGF-β1-induced enhanced cell migration and invasion. Western-blot analysis showed that thiomycin down-regulated the expression of FOXM1, N-cadherin, Snail, and Vimentin induced by TGF-β1, while blocking the expression of E-cadherin induced by TGF-β1 decreased.Conclusion: FOXM1 can directly bind to the promoter of E-cadherin encoding gene, and can indirectly inhibit E-cadherin expression by stimulating Snail. Overexpression of FOXM1 can promote EMT progression in NSCLC cells. Therefore, down-regulation of FOXM1 can inhibit this process. In addition, thiostrepton, a FOXM1 inhibitor, blocked proliferation, colony formation, and EMT progression in NSCLC cells.


Author(s):  
Qiu-di Deng ◽  
Xue-ping Lei ◽  
Yi-hang Zhong ◽  
Min-shan Chen ◽  
Yuan-yu Ke ◽  
...  

AbstractNon-small cell lung cancer (NSCLC) is characterized by a high incidence of metastasis and poor survival. As epithelial–mesenchymal transition (EMT) is well recognized as a major factor initiating tumor metastasis, developing EMT inhibitor could be a feasible treatment for metastatic NSCLC. Recent studies show that triptolide isolated from Tripterygium wilfordii Hook F attenuated the migration and invasion of breast cancer, colon carcinoma, and ovarian cancer cells, and EMT played important roles in this process. In the present study we investigated the effect of triptolide on the migration and invasion of NSCLC cell lines. We showed that triptolide (0.5, 1.0, 2.0 nM) concentration-dependently inhibited the migration and invasion of NCI-H1299 cells. Triptolide treatment concentration-dependently suppressed EMT in NCI-H1299 cells, evidenced by significantly elevated E-cadherin expression and reduced expression of ZEB1, vimentin, and slug. Furthermore, triptolide treatment suppressed β-catenin expression in NCI-H1299 and NCI-H460 cells, overexpression of β-catenin antagonized triptolide-caused inhibition on EMT, whereas knockout of β-catenin enhanced the inhibitory effect of triptolide on EMT. Administration of triptolide (0.75, 1.5 mg/kg per day, ip, every 2 days) for 18 days in NCI-H1299 xenograft mice dose-dependently suppressed the tumor growth, restrained EMT, and decreased lung metastasis, as evidence by significantly decreased expression of mesenchymal markers, increased expression of epithelial markers as well as reduced number of pulmonary lung metastatic foci. These results demonstrate that triptolide suppresses NSCLC metastasis by targeting EMT via reducing β-catenin expression. Our study implies that triptolide may be developed as a potential agent for the therapy of NSCLC metastasis.


Sign in / Sign up

Export Citation Format

Share Document