scholarly journals Complete genome sequences of Streptomyces spp. isolated from disease-suppressive soils

2019 ◽  
Author(s):  
Stephen C Heinsch ◽  
Suzie Hsu ◽  
Lindsey Otto-Hanson ◽  
Linda Kinkel ◽  
Michael Smanski

Abstract Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. Results Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93-23, Streptomyces sp. 3211-3, and Streptomyces sp. S3-4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp.. We compared these newly-sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. Conclusions Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of BGCs. The strong sequence similarity between GS93-23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.

2019 ◽  
Author(s):  
Stephen C Heinsch ◽  
Suzie Hsu ◽  
Lindsey Otto-Hanson ◽  
Linda Kinkel ◽  
Michael Smanski

Abstract Background Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. Results Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93-23, Streptomyces sp. 3211-3, and Streptomyces sp. S3-4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp.. We compared these newly-sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. Conclusions Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of BGCs. The strong sequence similarity between GS93-23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.


2019 ◽  
Author(s):  
Stephen C Heinsch ◽  
Suzie Hsu ◽  
Lindsey Otto-Hanson ◽  
Linda Kinkel ◽  
Michael Smanski

Abstract Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. Results Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93-23, Streptomyces sp. 3211-3, and Streptomyces sp. S3-4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp.. We compared these newly-sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. Conclusions Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of BGCs. The strong sequence similarity between GS93-23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Stephen C. Heinsch ◽  
Szu-Yi Hsu ◽  
Lindsey Otto-Hanson ◽  
Linda Kinkel ◽  
Michael J. Smanski

Abstract Background Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. Results Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93–23, Streptomyces sp. 3211–3, and Streptomyces sp. S3–4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp. We compared these newly sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. Conclusions Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of biosynthetic gene clusters. The strong sequence similarity between GS93–23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.


2018 ◽  
Author(s):  
Adrian Fritz ◽  
Peter Hofmann ◽  
Stephan Majda ◽  
Eik Dahms ◽  
Johannes Dröge ◽  
...  

Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis software, a wide range of benchmark data sets are required. Here, we describe the CAMISIM microbial community and metagenome simulator. The software can model different microbial abundance profiles, multi-sample time series and differential abundance studies, includes real and simulated strain-level diversity, and generates second and third generation sequencing data from taxonomic profiles or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample data sets of the human and mouse gut microbiomes we observed high functional congruence to the real data. As further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and read error profiles on two popular metagenome assemblers, MEGAHIT and metaSPAdes, on several thousand small data sets generated with CAMISIM. CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together with truth standards for method evaluation. All data sets and the software are freely available at: https://github.com/CAMI-challenge/CAMISIM


2021 ◽  
Vol 12 ◽  
Author(s):  
Carlos Caicedo-Montoya ◽  
Monserrat Manzo-Ruiz ◽  
Rigoberto Ríos-Estepa

Species of the genus Streptomyces are known for their ability to produce multiple secondary metabolites; their genomes have been extensively explored to discover new bioactive compounds. The richness of genomic data currently available allows filtering for high quality genomes, which in turn permits reliable comparative genomics studies and an improved prediction of biosynthetic gene clusters (BGCs) through genome mining approaches. In this work, we used 121 genome sequences of the genus Streptomyces in a comparative genomics study with the aim of estimating the genomic diversity by protein domains content, sequence similarity of proteins and conservation of Intergenic Regions (IGRs). We also searched for BGCs but prioritizing those with potential antibiotic activity. Our analysis revealed that the pan-genome of the genus Streptomyces is clearly open, with a high quantity of unique gene families across the different species and that the IGRs are rarely conserved. We also described the phylogenetic relationships of the analyzed genomes using multiple markers, obtaining a trustworthy tree whose relationships were further validated by Average Nucleotide Identity (ANI) calculations. Finally, 33 biosynthetic gene clusters were detected to have potential antibiotic activity and a predicted mode of action, which might serve up as a guide to formulation of related experimental studies.


2016 ◽  
Author(s):  
Ying Wang ◽  
Kun Liu ◽  
De Bi ◽  
Biao Shou Zhou ◽  
Wen Jian Shao

Background. Resurrection plants constitute a unique cadre within angiosperms. Boea clarkeana Hemsl. (Boea, Gesneriaceae) is a desiccation-tolerant dicotyledonous herb that is endemic to China. Although research on angiosperms with DT could be instructive for crops, genomic resources for B. clarkeana remain scarce. In addition, transcriptome sequencing could be an effective way to study desiccation-tolerant plants. Methods. In the present study, we used the platform Illumina HiSeqTM 2000 and de novo assembly technology to obtain leaf transcriptomes of B. clarkeana and conducted a BLASTX alignment of the sequencing data and protein databases for sequence classification and annotation. Then, based on the sequence information obtained, we developed EST-SSR markers by means of EST-SSR mining, primer design and polymorphism identification. Results. A total of 91,449 unigenes were generated from the leaf cDNA library of B. clarkeana in this study. Based on a sequence similarity search with a known protein database, 72,087 unigenes were annotated. Among the annotated unigenes, a total of 71,170 unigenes showed significant similarity to known proteins of 463 popular model species in the Nr database, and 59,962 unigenes and 32,336 unigenes were assigned to GO classifications and COG, respectively. In addition, 44,924 unigenes were mapped in 128 KEGG pathways. Furthermore, a total of 7,610 unigenes with 8,563 microsatellites were found. Seventy-four primer pairs were selected from 436 primer pairs designed for polymorphism validation. SSRs with higher polymorphism rates were concentrated on dinucleotides, pentanucleotides and hexanucleotides. Finally, 17 pairs with highly polymorphic and stable loci were selected for polymorphism screening. There were a total of 65 alleles, with 2–6 alleles at each locus. Mainly due to the unique biological characteristics of plants, the HE, HO and PIC per locus were very low, ranging from 0 to 0.196, 0.082 to 0.14 and 0 to 0.155, respectively. Discussion. A substantial fraction transcriptome sequences of B. clarkeana were generated in this study, which is the first molecular-level analysis of this plant. These sequences are valuable resources for gene annotation and discovery and molecular marker development. These sequences could also provide a valuable basis for the future molecular study of B. clarkeana.


2020 ◽  
Vol 70 (6) ◽  
pp. 3924-3929 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Venkatakrishnan Sivaraj Saravanan ◽  
Wah-Seng See-Too

Phylogenetic analysis based on 16S rRNA gene sequences of the genus Streptomyces showed the presence of six distinguishable clusters, with 100 % sequence similarity values among strains in each cluster; thus they shared almost the same evolutionary distance. This result corroborated well with the outcome of core gene (orthologous gene clusters) based genome phylogeny analysis of 190 genomes including the Streptomyces species in those six clusters. These preeminent results led to an investigation of genome-based indices such as digital DNA–DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) for the strains in those six clusters. Certain strains recorded genomic indices well above the threshold values (70 %, 95–96 % and >95 % for dDDH, ANI and AAI, respectively) determined for species affiliation, suggesting only one type strain belongs to described species and the other(s) may need to be reduced in taxa to a later heterotypic synonym. To conclude, the results of comprehensive analyses based on phylogenetic and genomic indices suggest that the following six reclassifications are proposed: Streptomyces flavovariabilis as a later heterotypic synonym of Streptomyces variegatus ; Streptomyces griseofuscus as a later heterotypic synonym of Streptomyces murinus ; Streptomyces kasugaensis as a later heterotypic synonym of Streptomyces celluloflavus ; Streptomyces luridiscabiei as a later heterotypic synonym of Streptomyces fulvissimus ; Streptomyces pharetrae as a later heterotypic synonym of Streptomyces glaucescens ; and Streptomyces stelliscabiei as a later heterotypic synonym of Streptomyces bottropensis .


2020 ◽  
Vol 8 (3) ◽  
pp. 370
Author(s):  
Hisayuki Komaki ◽  
Akira Hosoyama ◽  
Yasuhiro Igarashi ◽  
Tomohiko Tamura

(1) Background: Streptomyces sp. TP-A0598 derived from seawater produces lydicamycin and its congeners. We aimed to investigate its taxonomic status; (2) Methods: A polyphasic approach and whole genome analysis are employed; (3) Results: Strain TP-A0598 contained ll-diaminopimelic acid, glutamic acid, glycine, and alanine in its peptidoglycan. The predominant menaquinones were MK-9(H6) and MK-9(H8), and the major fatty acids were C16:0, iso-C15:0, iso-C16:0, and anteiso-C15:0. Streptomyces sp. TP-A0598 showed a 16S rDNA sequence similarity value of 99.93% (1 nucleottide difference) to Streptomyces angustmyceticus NRRL B-2347T. The digital DNA–DNA hybridisation value between Streptomyces sp. TP-A0598 and its closely related type strains was 25%–46%. Differences in phenotypic characteristics between Streptomyces sp. TP-A0598 and its phylogenetically closest relative, S. angustmyceticus NBRC 3934T, suggested strain TP-A0598 to be a novel species. Streptomyces sp. TP-A0598 and S. angustmyceticus NBRC 3934T harboured nine and 13 biosynthetic gene clusters for polyketides and nonribosomal peptides, respectively, among which only five clusters were shared between them, whereas the others are specific for each strain; and (4) Conclusions: For strain TP-A0598, the name Streptomyces lydicamycinicus sp. nov. is proposed; the type strain is TP-A0598T (=NBRC 110027T).


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 919
Author(s):  
Erica E. Ferrandi ◽  
Jelena Spasic ◽  
Lidija Djokic ◽  
Yevhen Vainshtein ◽  
Ramsankar Senthamaraikannan ◽  
...  

Three Streptomyces sp. strains with a multitude of target enzymatic activities confirmed by functional screening, namely BV129, BV286 and BV333, were subjected to genome sequencing aiming at the annotation of genes of interest, in-depth bioinformatics characterization and functional expression of the biocatalysts. A whole-genome shotgun sequencing followed by de novo genome assembly and annotation was performed revealing genomes of 6.4, 9.4 and 7.3 Mbp, respectively. Functional annotation of the proteins of interest resulted in between 2047 and 2763 putative targets. Among the various enzymatic activities that the three Streptomyces strains demonstrated to produce by functional screening, we focused our attention on transaminases (TAs) and laccases due to their high biocatalytic potential. Bioinformatics search allowed the identification of a putative TA from Streptomyces sp. BV333 as a potentially novel broad substrate scope TA and a putative laccase from Streptomyces sp. BV286 as potentially novel blue multicopper oxidase. The two sequences were cloned and overexpressed in Escherichia coli and the two novel enzymes, transaminase Sbv333-TA and laccase Sbv286-LAC, were characterized. Interestingly, both enzymes resulted to be exceptionally thermostable, Sbv333-TA showing a melting temperature (TM = 85 °C) only slightly lower compared to the TM of the most thermostable transaminases described to date (87–88 °C) and Sbv286-LAC being even thermoactivated at temperature >60 °C. Moreover, Sbv333-TA showed a broad substrate scope and remarkably demonstrated to be active in the transamination of β-ketoesters, which are rarely accepted by currently known TAs. On the other hand, Sbv286-LAC showed an improved activity in the presence of the cosolvent acetonitrile. Overall, it was shown that a combination of approaches from standard microbiological and biochemical screens to genome sequencing and analysis is required to afford novel and functional biocatalysts.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10525
Author(s):  
Samar M. Abdelrahman ◽  
Nastassia V. Patin ◽  
Amro Hanora ◽  
Akram Aboseidah ◽  
Shimaa Desoky ◽  
...  

Background Antibiotic resistance is a growing problem that can be ameliorated by the discovery of novel drug candidates. Bacterial associates are often the source of pharmaceutically active natural products isolated from marine invertebrates, and thus, important targets for drug discovery. While the microbiomes of many marine organisms have been extensively studied, microbial communities from chemically-rich nudibranchs, marine invertebrates that often possess chemical defences, are relatively unknown. Methods We applied both culture-dependent and independent approaches to better understand the biochemical potential of microbial communities associated with nudibranchs. Gram-positive microorganisms isolated from nudibranchs collected in the Red Sea were screened for antibacterial and antitumor activity. To assess their biochemical potential, the isolates were screened for the presence of natural product biosynthetic gene clusters, including polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, using PCR. The microbiomes of the nudibranchs were investigated by high-throughput sequencing of 16S rRNA amplicons. Results In screens against five model microorganisms, 51% of extracts displayed antimicrobial activity against more than one organism, and 19% exhibited antitumor activity against Ehrlich’s ascites carcinoma. Sixty-four percent of isolates contained PKS and NRPS genes, suggesting their genomes contain gene clusters for natural product biosynthesis. Thirty-five percent were positive for more than one class of biosynthetic gene. These strains were identified as belonging to the Firmicutes and Actinobacteria phyla via 16S rRNA gene sequencing. In addition, 16S rRNA community amplicon sequencing revealed all bacterial isolates were present in the uncultured host-associated microbiome, although they were a very small percentage of the total community. Taken together, these results indicate that bacteria associated with marine nudibranchs are potentially a rich source of bioactive compounds and natural product biosynthetic genes.


Sign in / Sign up

Export Citation Format

Share Document