scholarly journals TIMP-2 secreted by monocytes is a potent suppressor of invadopodia formation in pancreatic cancer cells

2019 ◽  
Author(s):  
Christian Benzing ◽  
Hoyin Lam ◽  
Chi Man Tsang ◽  
Yoana Arroyo-Berdugo ◽  
Yolanda Calle-Patino ◽  
...  

Abstract Background Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. Methods In this in vitro study, to specifically test the impact of interaction on invasive potential, two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia. Co-culture experiments were performed using undifferentiated THP1 monocytes. Results When the PDAC cells were co-cultured with undifferentiated THP1 monocytes invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. Conclusions Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.

2019 ◽  
Author(s):  
Christian Benzing ◽  
Hoyin Lam ◽  
Chi Man Tsang ◽  
Alexander Rimmer ◽  
Yoana Arroyo-Berdugo ◽  
...  

Abstract Background Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. Methods In this in vitro study, to specifically test the impact of interaction on invasive potential, two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia. Co-culture experiments were performed using undifferentiated THP1 monocytes. Results When the PDAC cells were co-cultured with undifferentiated THP1 monocytes invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. Conclusions Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.


2019 ◽  
Author(s):  
Christian Benzing ◽  
Hoyin Lam ◽  
Chi Man Tsang ◽  
Alexander Rimmer ◽  
Yoana Arroyo-Berdugo ◽  
...  

Abstract Background Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. Methods To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. Results Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. Conclusions Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Christian Benzing ◽  
Hoyin Lam ◽  
Chi Man Tsang ◽  
Alexander Rimmer ◽  
Yoana Arroyo-Berdugo ◽  
...  

Abstract Background Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. Methods To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. Results Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. Conclusions Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.


2019 ◽  
Author(s):  
Christian Benzing ◽  
Hoyin Lam ◽  
Chi Man Tsang ◽  
Alexander Rimmer ◽  
Yoana Arroyo-Berdugo ◽  
...  

Abstract Background Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. Methods To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. Results Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. Conclusions Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Kosuke Ogawa ◽  
Qiushi Lin ◽  
Le Li ◽  
Xuewei Bai ◽  
Xuesong Chen ◽  
...  

Abstract Background Signaling pathways critical for embryonic development re-emerge in adult pancreas during tumorigenesis. Aspartate β-hydroxylase (ASPH) drives embryonic cell motility/invasion in pancreatic development/differentiation. We explored if dysregulated ASPH is critically involved in pancreatic cancer pathogenesis. Methods To demonstrate if/how ASPH mediates malignant phenotypes, proliferation, migration, 2-D/3-D invasion, pancreatosphere formation, immunofluorescence, Western blot, co-immunoprecipitation, invadopodia formation/maturation/function, qRT-PCR, immunohistochemistry (IHC), and self-developed in vitro metastasis assays were performed. Patient-derived xenograft (PDX) models of human pancreatic ductal adenocarcinoma (PDAC) were established to illustrate in vivo antitumor effects of the third-generation small molecule inhibitor specifically against ASPH’s β-hydroxylase activity. Prognostic values of ASPH network components were evaluated with Kaplan-Meier plots, log-rank tests, and Cox proportional hazards regression models. Results ASPH renders pancreatic cancer cells more aggressive phenotypes characterized by epithelial–mesenchymal transition (EMT), 2-D/3-D invasion, invadopodia formation/function as demonstrated by extracellular matrix (ECM) degradation, stemness (cancer stem cell marker upregulation and pancreatosphere formation), transendothelial migration (mimicking intravasation/extravasation), and sphere formation (mimicking metastatic colonization/outgrowth at distant sites). Mechanistically, ASPH activates SRC cascade through direct physical interaction with ADAM12/ADAM15 independent of FAK. The ASPH-SRC axis enables invadopodia construction and initiates MMP-mediated ECM degradation/remodeling as executors for invasiveness. Pharmacologic inhibition of invadopodia attenuates in vitro metastasis. ASPH fosters primary tumor development and pulmonary metastasis in PDX models of PDAC, which is blocked by a leading compound specifically against ASPH enzymatic activity. ASPH is silenced in normal pancreas, progressively upregulated from pre-malignant lesions to invasive/advanced stages of PDAC. Expression profiling of ASPH-SRC network components independently/jointly predicts clinical outcome of PDAC patients. Compared to a negative-low level, a moderate-very high level of ASPH, ADAM12, activated SRC, and MMPs correlated with curtailed overall survival (OS) of pancreatic cancer patients (log-rank test, ps < 0.001). The more unfavorable molecules patients carry, the more deleterious prognosis is destinated. Patients with 0–2 (n = 4), 3–5 (n = 8), 6–8 (n = 24), and 9–12 (n = 73) unfavorable expression scores of the 5 molecules had median survival time of 55.4, 15.9, 9.7, and 5.0 months, respectively (p < 0.001). Conclusion Targeting the ASPH-SRC axis, which is essential for propagating multi-step PDAC metastasis, may specifically/substantially retard development/progression and thus improve prognosis of PDAC.


Gut ◽  
2017 ◽  
Vol 67 (3) ◽  
pp. 497-507 ◽  
Author(s):  
E Hessmann ◽  
M S Patzak ◽  
L Klein ◽  
N Chen ◽  
V Kari ◽  
...  

ObjectiveDesmoplasia and hypovascularity are thought to impede drug delivery in pancreatic ductal adenocarcinoma (PDAC). However, stromal depletion approaches have failed to show clinical responses in patients. Here, we aimed to revisit the role of the tumour microenvironment as a physical barrier for gemcitabine delivery.DesignGemcitabine metabolites were analysed in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) murine tumours and matched liver metastases, primary tumour cell lines, cancer-associated fibroblasts (CAFs) and pancreatic stellate cells (PSCs) by liquid chromatography-mass spectrometry/mass spectrometry. Functional and preclinical experiments, as well as expression analysis of stromal markers and gemcitabine metabolism pathways were performed in murine and human specimen to investigate the preclinical implications and the mechanism of gemcitabine accumulation.ResultsGemcitabine accumulation was significantly enhanced in fibroblast-rich tumours compared with liver metastases and normal liver. In vitro, significantly increased concentrations of activated 2′,2′-difluorodeoxycytidine-5′-triphosphate (dFdCTP) and greatly reduced amounts of the inactive gemcitabine metabolite 2′,2′-difluorodeoxyuridine were detected in PSCs and CAFs. Mechanistically, key metabolic enzymes involved in gemcitabine inactivation such as hydrolytic cytosolic 5′-nucleotidases (Nt5c1A, Nt5c3) were expressed at low levels in CAFs in vitro and in vivo, and recombinant expression of Nt5c1A resulted in decreased intracellular dFdCTP concentrations in vitro. Moreover, gemcitabine treatment in KPC mice reduced the number of liver metastases by >50%.ConclusionsOur findings suggest that fibroblast drug scavenging may contribute to the clinical failure of gemcitabine in desmoplastic PDAC. Metabolic targeting of CAFs may thus be a promising strategy to enhance the antiproliferative effects of gemcitabine.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


Author(s):  
Huiming Chen ◽  
Junfeng Zhao ◽  
Ningning Jiang ◽  
Zheng Wang ◽  
Chang Liu

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, with a 5-year survival rate of less than 10% because of the limited knowledge of tumor-promoting factors and their underlying mechanism. Diabetes mellitus (DM) and hyperglycemia are risk factors for many cancers, including PDAC, that modulate multiple downstream signaling pathways, such as the wingless/integrated (Wnt)/β-catenin signaling pathway. However, whether hyperglycemia promotes PDAC initiation and progression by activating the Wnt/β-catenin signaling pathway remains unclear. Methods: In this study, we used bioinformatics analysis and clinical specimen analysis to evaluate the activation states of the Wnt/βcatenin signaling pathway. In addition, colony formation assays, Transwell assays and wound-healing assays were used to evaluate the malignant biological behaviors of pancreatic cancer cells (PCs) under hyperglycemic conditions. To describe the effects of hyperglycemia and the Wnt/β-catenin signaling pathway on the initiation of PDAC, we used pancreatitis-driven pancreatic cancer initiation models in vivo and pancreatic acinar cell 3-dimensional culture in vitro. Results: Wnt/β-catenin signaling pathway-related molecules were overexpressed in PDAC tissues/cells and correlated with poor prognosis in PDAC patients. In addition, hyperglycemia exacerbated the abnormal activation of β-catenin in PDAC and enhanced the malignant biological behaviors of PCs in a Wnt/β-catenin signaling pathway-dependent manner. Indeed, hyperglycemia accelerated the formation of pancreatic precancerous lesions by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Conclusion: Hyperglycemia promotes pancreatic cancer initiation and progression by activating the Wnt/β-catenin signaling pathway.


Gut ◽  
2018 ◽  
Vol 68 (4) ◽  
pp. 693-707 ◽  
Author(s):  
Delphine Goehrig ◽  
Jérémy Nigri ◽  
Rémi Samain ◽  
Zhichong Wu ◽  
Paola Cappello ◽  
...  

ObjectivePancreatic cancer is associated with an abundant stromal reaction leading to immune escape and tumour growth. This massive stroma drives the immune escape in the tumour. We aimed to study the impact of βig-h3 stromal protein in the modulation of the antitumoural immune response in pancreatic cancer.DesignWe performed studies with p48-Cre;KrasG12D, pdx1-Cre;KrasG12D;Ink4a/Arffl/fl, pdx1-Cre;KrasG12D; p53R172H mice and tumour tissues from patients with pancreatic ductal adenocarcinoma (PDA). Some transgenic mice were given injections of anti-βig-h3, anti-CD8, anti-PD1 depleting antibodies. Tumour growth as well as modifications in the activation of local immune cells were analysed by flow cytometry, immunohistochemistry and immunofluorescence. Tissue stiffness was measured by atomic force microscopy.ResultsWe identified βig-h3 stromal-derived protein as a key actor of the immune paracrine interaction mechanism that drives pancreatic cancer. We found that βig-h3 is highly produced by cancer-associated fibroblasts in the stroma of human and mouse. This protein acts directly on tumour-specific CD8+ T cells and F4/80 macrophages. Depleting βig-h3 in vivo reduced tumour growth by enhancing the number of activated CD8+ T cell within the tumour and subsequent apoptotic tumour cells. Furthermore, we found that targeting βig-h3 in established lesions released the tissue tension and functionally reprogrammed F4/80 macrophages in the tumour microenvironment.ConclusionsOur data indicate that targeting stromal extracellular matrix protein βig-h3 improves the antitumoural response and consequently reduces tumour weight. Our findings present βig-h3 as a novel immunological target in pancreatic cancer.


2018 ◽  
Vol 8 (1) ◽  
pp. 20-26
Author(s):  
Asim Rizvi ◽  
Sean T. Fitzgerald ◽  
Kent D. Carlson ◽  
Dan Dragomir Daescu ◽  
Waleed Brinjikji ◽  
...  

Background: “Remote aspiration,” using suction from the proximal internal carotid artery (ICA) to open terminus occlusions, has been reported in small case series. However, it remains unclear whether remote aspiration is feasible for middle cerebral artery occlusions in the setting of potential inflow from communicating arteries. We performed an in vitro study to assess whether suction applied at various locations proximal to an occlusion could successfully aspirate the clot. Methods: A glass model of 4 mm inner diameter (ID) with 1 mm distal narrowing and 2 mm side branch to simulate a communicating artery was constructed. A proximal side branch was placed to simulate inflow from the proximal ICA. The impact of three different-sized catheters (ID 0.088, 0.070, and 0.056 in) on histologically different (red blood cell-cell rich, fibrin-rich, and mixed) clot analogues was tested with the catheter tip placed remotely either distal or proximal to the collateral branch. Aspiration was attempted with (1) open system (flow in both the ICA and the collateral branch, (2) flow arrest with open collateral (no flow in the ICA, but flow in the collateral branch), and (3) closed system (no flow in either the ICA or the collateral branch). The outcome was success or failure of remote aspiration. Results: For the 0.088-in catheter, remote aspiration was successful in all conditions. For the 0.070-in catheter, remote aspiration was unsuccessful without proximal flow arrest, but was successful in all other scenarios. For the 0.056-in catheter, remote aspiration was successful only with complete flow arrest. Conclusions: In a noncollapsible system, remote aspiration can be successfully achieved even in the setting of prominent branch arteries by using relatively large aspiration catheters. Proximal flow arrest may facilitate successful remote aspiration for some catheter sizes.


Sign in / Sign up

Export Citation Format

Share Document