scholarly journals A Post-Method Condition Analysis of Using Ensemble Machine Learning for Cancer Prognosis and Diagnosis: a systematic review

2019 ◽  
Author(s):  
Kaveh Kavousi ◽  
Leila Mirsadeghi ◽  
Reza Haji Hosseini ◽  
Ali Mohammad Banaei-Moghaddam ◽  
Seyed Reza Beh-Afarin

Abstract Background Ensemble methods are supervised learning approaches that integrate different types of data or multiple individual classifiers. It has been shown that these methods can improve professional performance. Methods This study is an attempt to provide an in-depth review on 45 most relevant articles and aims to introduce 42 ensemble classifier (EC) machine learning methods used for the detection of 18 different types of cancer. Compared to other types of cancer, breast cancer, and the 22 ensemble methods introduced for its identification, is extensively investigated. The purpose of this study was to identify, map, and analyze the current academic discourse on EC machine learning methods in order to: 1. identify overarching themes emerging from empirical studies regarding EC methods, 2. determine their input data and decision-making strategies, and 3. evaluate relevant statistical procedures. Results By comparing various approaches, we can introduce Relevance Vector Machine (RVM)-based ensemble learning method that can provide optimal solutions for problems such as curse the dimensionality and high-dimensionality of feature space without missing data values. Conclusions To obtain robust performance and achieve better results, it is tactfully suggested to use multi-omics data integration, which has demonstrated to identify cancers and their subtypes more efficiently.

2019 ◽  
Author(s):  
Leila Mirsadeghi ◽  
Ali Mohammad Banaei-Moghaddam ◽  
Seyed Reza Beh-Afarin ◽  
Reza Haji Hosseini ◽  
Kaveh Kavousi

Abstract Background: Ensemble methods are supervised learning approaches that integrate different types of data or multiple individual classifiers. It has been shown that these methods can improve professional performance.Methods: This study is an attempt to provide an in-depth review on 45 most relevant articles and aims to introduce 42 ensemble classifier (EC) machine learning methods used for the detection of 18 different types of cancer. Compared to other types of cancer, breast cancer, and the 22 ensemble methods introduced for its identification, is extensively investigated. The purpose of this study is to identify, map, and analyze the current academic discourse on EC machine learning methods in order to: 1. identify overarching themes emerging from empirical studies as regards EC methods, 2. determine their input data and decision-making strategies, and 3. evaluate relevant statistical procedures.Results: By comparing various approaches, we can introduce Relevance Vector Machine (RVM)-based ensemble learning method that can provide optimal solutions for problems such as curse the dimensionality and high-dimensionality of feature space without missing data values.Conclusions: To obtain robust performance and achieve better results, it is tactfully suggested to use multi-omics data integration, which has demonstrated to identify cancers and their subtypes more efficiently.


2019 ◽  
Author(s):  
Kaveh Kavousi ◽  
Leila Mirsadeghi ◽  
Reza Haji Hosseini ◽  
Ali Mohammad Banaei-Moghaddam ◽  
Seyed Reza Beh-Afarin

Abstract Background Ensemble methods are supervised learning approaches that integrate different types of data or multiple individual classifiers. It has been shown that these methods can improve professional performance. Methods This study is an attempt to provide an in-depth review on 45 most relevant articles and aims to introduce 42 ensemble classifier (EC) machine learning methods used for the detection of 18 different types of cancer. Compared to other types of cancer, breast cancer, and the 22 ensemble methods introduced for its identification, is extensively investigated. The purpose of this study was to identify, map, and analyze the current academic discourse on EC machine learning methods in order to: 1. identify overarching themes emerging from empirical studies regarding EC methods, 2. determine their input data and decision-making strategies, and 3. evaluate relevant statistical procedures. Results By comparing various approaches, we can introduce Relevance Vector Machine (RVM)-based ensemble learning method that can provide optimal solutions for problems such as curse the dimensionality and high-dimensionality of feature space without missing data values. Conclusions To obtain robust performance and achieve better results, it is tactfully suggested to use multi-omics data integration, which has demonstrated to identify cancers and their subtypes more efficiently.


2021 ◽  
Vol 10 (4) ◽  
pp. 199
Author(s):  
Francisco M. Bellas Aláez ◽  
Jesus M. Torres Palenzuela ◽  
Evangelos Spyrakos ◽  
Luis González Vilas

This work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.


Author(s):  
Basant Agarwal ◽  
Namita Mittal

Opinion Mining or Sentiment Analysis is the study that analyzes people's opinions or sentiments from the text towards entities such as products and services. It has always been important to know what other people think. With the rapid growth of availability and popularity of online review sites, blogs', forums', and social networking sites' necessity of analysing and understanding these reviews has arisen. The main approaches for sentiment analysis can be categorized into semantic orientation-based approaches, knowledge-based, and machine-learning algorithms. This chapter surveys the machine learning approaches applied to sentiment analysis-based applications. The main emphasis of this chapter is to discuss the research involved in applying machine learning methods mostly for sentiment classification at document level. Machine learning-based approaches work in the following phases, which are discussed in detail in this chapter for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This chapter also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the chapter with a comparative study of some state-of-the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.


Big Data ◽  
2016 ◽  
pp. 1917-1933
Author(s):  
Basant Agarwal ◽  
Namita Mittal

Opinion Mining or Sentiment Analysis is the study that analyzes people's opinions or sentiments from the text towards entities such as products and services. It has always been important to know what other people think. With the rapid growth of availability and popularity of online review sites, blogs', forums', and social networking sites' necessity of analysing and understanding these reviews has arisen. The main approaches for sentiment analysis can be categorized into semantic orientation-based approaches, knowledge-based, and machine-learning algorithms. This chapter surveys the machine learning approaches applied to sentiment analysis-based applications. The main emphasis of this chapter is to discuss the research involved in applying machine learning methods mostly for sentiment classification at document level. Machine learning-based approaches work in the following phases, which are discussed in detail in this chapter for sentiment classification: (1) feature extraction, (2) feature weighting schemes, (3) feature selection, and (4) machine-learning methods. This chapter also discusses the standard free benchmark datasets and evaluation methods for sentiment analysis. The authors conclude the chapter with a comparative study of some state-of-the-art methods for sentiment analysis and some possible future research directions in opinion mining and sentiment analysis.


2020 ◽  
Vol 30 (Suppl 1) ◽  
pp. 217-228 ◽  
Author(s):  
Sanjay Basu ◽  
James H. Faghmous ◽  
Patrick Doupe

  Precision medicine research designed to reduce health disparities often involves studying multi-level datasets to understand how diseases manifest disproportionately in one group over another, and how scarce health care resources can be directed precisely to those most at risk for disease. In this article, we provide a structured tutorial for medical and public health research­ers on the application of machine learning methods to conduct precision medicine research designed to reduce health dispari­ties. We review key terms and concepts for understanding machine learning papers, including supervised and unsupervised learning, regularization, cross-validation, bagging, and boosting. Metrics are reviewed for evaluating machine learners and major families of learning approaches, including tree-based learning, deep learning, and ensemble learning. We highlight the advan­tages and disadvantages of different learning approaches, describe strategies for interpret­ing “black box” models, and demonstrate the application of common methods in an example dataset with open-source statistical code in R.Ethn Dis. 2020;30(Suppl 1):217-228; doi:10.18865/ed.30.S1.217


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246102
Author(s):  
Daekyum Kim ◽  
Sang-Hun Kim ◽  
Taekyoung Kim ◽  
Brian Byunghyun Kang ◽  
Minhyuk Lee ◽  
...  

Soft robots have been extensively researched due to their flexible, deformable, and adaptive characteristics. However, compared to rigid robots, soft robots have issues in modeling, calibration, and control in that the innate characteristics of the soft materials can cause complex behaviors due to non-linearity and hysteresis. To overcome these limitations, recent studies have applied various approaches based on machine learning. This paper presents existing machine learning techniques in the soft robotic fields and categorizes the implementation of machine learning approaches in different soft robotic applications, which include soft sensors, soft actuators, and applications such as soft wearable robots. An analysis of the trends of different machine learning approaches with respect to different types of soft robot applications is presented; in addition to the current limitations in the research field, followed by a summary of the existing machine learning methods for soft robots.


2017 ◽  
Vol 1 (Supplementary 1) ◽  
pp. 0-0
Author(s):  
L Mirsadeghi ◽  
K Kavousi ◽  
R Hajihosseini ◽  
A Banaei-Moghaddam

2006 ◽  
Vol 2 ◽  
pp. 117693510600200 ◽  
Author(s):  
Joseph A. Cruz ◽  
David S. Wishart

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.


Sign in / Sign up

Export Citation Format

Share Document