scholarly journals Multiplexed lipid metabolic tracing using click chemistry mass spectrometric reporter molecules

Author(s):  
Christoph Thiele ◽  
Klaus Wunderling ◽  
Philipp Leyendecker

Abstract This protocol provides a method for sensitive multiplexed metabolic tracing. It is based on the combination of alkyne-labeled metabolic precursors and dedicated azido reporter molecules that are optimized for mass spectrometric detection after click reaction. After metabolic incorporation of alkyne fatty acids, sub-picomole to femtomole amounts of labeled material can be detected. Time resolution can be achieved by pulse-chase labeling.

2020 ◽  
Vol 36 (6) ◽  
pp. 35-48
Author(s):  
D.V. Коchkin ◽  
G.I. Sobolkovа ◽  
А.А. Fоmеnkov ◽  
R.А. Sidorov ◽  
А.М. Nоsоv

The physiological characteristics of the callus cell cultures of Alhagi persarum Boiss et Buhse, a member of the legume family, widely used in folk medicine, have been studied. It was shown that the source of the explant was an important factor in the initiation of callusogenesis: more intense callusogenesis (almost 100%) was observed for explants from various organs of sterile seedlings, rather than intact plants (less than 30%). As a result, more than 20 lines of morphologically different callus cell cultures were obtained, and the growth parameters for the 5 most intensively growing lines were determined. The composition of fatty acids (FA) of total lipids and secondary metabolites in the most physiologically stable callus line Aр-207 was analyzed. Using capillary gas-liquid chromatography with mass spectrometric detection (GLC-MS), 19 individual C12--C24 FAs were identified, the main fraction of which were palmitic (~ 23%), stearic (~ 22%), linoleic (~ 14%) and α-linolenic (~ 33%) acids. The established atypical ratio of FAs (a simultaneous high content of both saturated FAs and polyunsaturated α-linolenic acid) is possibly due to the adaptation of cells to in vitro growth conditions. Phytochemical analysis of the secondary metabolites was carried out using ultra-performance liquid chromatography with electrospray ionization mass spectrometric detection (UPLC MS). Compounds belonging to different structural groups of isoflavones were found. Aglycones (calycosin, formononetin and afrormosin isomer), glucosides (formononetin glucoside), as well as esters of glucosides (malonylglycosides of calicosin, formononetin, afrormosin isomers, glycitein and genistein) were detected. These secondary metabolites are widespread in plants of the Fabaceae family; however, isoflavones are rare in representatives of the Alhagi genus. The presence of malonylated isoflavone glycosides in Alhagi spp. was shown for the first time. endemic plant species, Alhagi, in vitro cell culture, callus cell culture, isoflavones, fatty acids All studies were carried out using the equipment of the "Experimental Biotechnological Facility" and the "All-Russian Collection of Cell Cultures of Higher Plants" of IРР RAS. This work was supported by the Russian Foundation for Basic Research (RFBR), contract no.18-54-06021 (Az_a), and the Government of the Russian Federation, Megagrant Project no. 075-15-2019-1882.


2003 ◽  
Vol 783 (2) ◽  
pp. 443-451 ◽  
Author(s):  
M.M. Keinänen ◽  
L.K. Korhonen ◽  
P.J. Martikainen ◽  
T. Vartiainen ◽  
I.T. Miettinen ◽  
...  

2017 ◽  
Vol 89 (19) ◽  
pp. 10329-10334 ◽  
Author(s):  
Martin Thomas Gaugg ◽  
Tobias Bruderer ◽  
Nora Nowak ◽  
Lara Eiffert ◽  
Pablo Martinez-Lozano Sinues ◽  
...  

Author(s):  
Rojeet Shrestha ◽  
Zhen Chen ◽  
Zijun Gao ◽  
Yifan Chen ◽  
Emiko Okada ◽  
...  

Background We developed and compared two liquid chromatography methods, one with UV/Visible spectrophotometric detection (HPLC) and the other with mass spectrometric detection (LC-MS), for quantifying very-long chain fatty acids (VLCFA) in human plasma. Association of VLCFA with various cardiovascular risk factors were evaluated. Method Fasting blood samples were collected from 541 human volunteers (242 men and 299 women; mean age ±SD, 58.9 ± 12.4 years), including 429 and 112 individuals with and without hypertriglyceridemia, respectively. Esterified VLCFA were saponified and derivatized with 2-nitrophenylhydrazine. Separation of VLCFA species was achieved with C4 Mightysil column (HPLC) and Ascentis Express Phenyl-Hexyl column (LC-MS) followed by spectrophotometric and selected-reaction monitoring mode of mass spectrometric detection, respectively. Results The HPLC assay of VLCFA was precise with intra-assay imprecision of 2.5% to 6.9% and inter-assay imprecision of 3.2% to 9.5%. Moreover, there was an excellent correlation (r > 0.96) between HPLC and LC-MS methods. The 95 percentile reference intervals (RI; upper limit) of VLCFA were determined to be 41.3 µmol/L in healthy volunteers. Plasma VLCFA were significantly correlated with triglycerides (Spearman’s ρ = 0.306, P <  0.001) and total cholesterol (Spearman’s ρ = 0.251, P <  0.001). All species of VLCFA were significantly elevated in hypertriglyceridaemic individuals compared with control. Conclusion We established LC-based assays of VLCFA with either spectrophotometry or mass spectrometry as a detection system. Hypertriglyceridaemia is significantly associated with elevated concentration of each species of VLCFA.


Sign in / Sign up

Export Citation Format

Share Document