Effects of shade stress on morphophysiology and rhizosphere soil bacterial communities of two contrasting shade-tolerant turfgrasses
Abstract Background: Shade presents one of the major abiotic limitations for turfgrass growth. Shade influences plant growth and alters plant metabolism, yet little is known about how shade affects the structure of rhizosphere soil microbial communities and the role of soil microorganisms in plant shade responses. In this study, a glasshouse experiment was conducted to examine the impact of shade stress on the growth and photosynthetic capacity of two contrasting shade-tolerant turfgrasses, shade-tolerant dwarf lilyturf (Ophiopogon japonicus, OJ) and shade-intolerant perennial turf-type ryegrass (Lolium perenne, LP). We also examined soil-plant feedback effects on shade tolerance in the two turfgrass genotypes. Bacterial community composition was assayed using high-throughput sequencing. Results: Our physiochemical data showed that under shade stress, OJ maintained higher photosynthetic capacity and root growth, thus OJ was found to be more shade-tolerant than LP. Shade-intolerant LP responded better to both shade and soil microbes than shade-tolerant OJ. Shade and live soil decreased LP growth but increased biomass allocation to shoots in the live soil. The plant shade response index of LP is higher in the live soil than sterile soil, driven by weakened soil-plant feedback under shade stress. In contrast, there was no difference in these values for OJ under similar shade and soil treatments. Illumina sequencing data revealed that shade stress had little impact on the diversity of the OJ and LP’s bacterial communities, but instead impacted the composition of bacterial communities. The bacterial communities were mostly composed of Proteobacteria and Acidobacteria in OJ soil. Further pairwise fitting analysis showed that a positive correlation of shade-tolerance in two turfgrasses and their bacterial community compositions. Several soil properties (NO3--N, NH4+-N, AK) showed a tight coupling with several major bacterial communities under shade stress, indicating that they are important drivers determining bacterial community structures. Moreover, OJ shared core bacterial taxa known to promote plant growth and confer tolerance to shade stress, which suggests common principles underpinning OJ-microbe interactions. Conclusion: Plant shade tolerance is mediated by soil-plant feedback and shade-induced changes in rhizosphere soil bacterial community structure in OJ and LP plants.