scholarly journals Pattern and Timing of Diversification in the African Freshwater Fish Genus Distichodus (Characiformes: Distichodontidae)

2019 ◽  
Author(s):  
Jairo Arroyave ◽  
John S. S. Denton ◽  
Melanie L. J. Stiassny

Abstract Background: Distichodus, the type genus of the endemic African characiform family Distichodontidae, is a clade of tropical freshwater fishes currently comprising 25 named species distributed continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic range evolution. Results: Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major clades of similar species-level diversity and provide support for the monophyletic status of most sampled species. Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary history of the group.Conclusions: We present the most comprehensive phylogenetic, chronological, and biogeographic treatment ever conducted for the genus. The few instances of species paraphyly (D. teugelsi, D. fasciolatus) revealed by the resulting phylogenies might be a consequence of deep coalescence and recent speciation. Historical biogeographic findings are both in agreement and conflict with previous studies of other continent-wide African freshwater fish genera, suggesting acomplex scenario for the assemblage of Africa’s continental ichthyofaunal communities. Keywords: Distichodontidae, Distichodus, Congo Basin, molecular phylogeny, African fishes, geographic range evolution, molecular dating.

2020 ◽  
Author(s):  
Jairo Arroyave ◽  
John S. S. Denton ◽  
Melanie L. J. Stiassny

Abstract Background: Distichodus is a clade of tropical freshwater fishes currently comprising 25 named species distributed continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic range evolution.Results: Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major clades of similar species-level diversity and provide support for the monophyletic status of most sampled species. Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary history of the group.Conclusions: We present the most comprehensive phylogenetic, chronological, and biogeographic treatment yet conducted for the genus. The few instances of species paraphyly (D. teugelsi, D. fasciolatus) revealed by the resulting phylogenies are likely a consequence of post-divergence introgressive hybridization and/or incomplete lineage sorting due to recent speciation. Historical biogeographic findings are both in agreement and conflict with previous studies of other continent-wide African freshwater fish genera, suggesting a complex scenario for the assemblage of Africa’s continental ichthyofaunal communities.


2020 ◽  
Author(s):  
Jairo Arroyave ◽  
John S. S. Denton ◽  
Melanie L. J. Stiassny

Abstract Background : Distichodus is a clade of tropical freshwater fishes currently comprising 25 named species distributed continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic range evolution. Results: Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major clades of similar species-level diversity and provide support for the monophyletic status of most sampled species. Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary history of the group. Conclusions : We present the most comprehensive phylogenetic, chronological, and biogeographic treatment yet conducted for the genus. The few instances of species paraphyly ( D. teugelsi, D. fasciolatus ) revealed by the resulting phylogenies are likely a consequence of post-divergence introgressive hybridization and/or incomplete lineage sorting due to recent speciation. Historical biogeographic findings are both in agreement and conflict with previous studies of other continent-wide African freshwater fish genera, suggesting a complex scenario for the assemblage of Africa’s continental ichthyofaunal communities.


2020 ◽  
Author(s):  
Jairo Arroyave ◽  
John S. S. Denton ◽  
Melanie L. J. Stiassny

Abstract Background : Distichodus is a clade of tropical freshwater fishes currently comprising 25 named species distributed continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic range evolution. Results: Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major clades of similar species-level diversity and provide support for the monophyletic status of most sampled species. Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary history of the group. Conclusions : We present the most comprehensive phylogenetic, chronological, and biogeographic treatment yet conducted for the genus. The few instances of species paraphyly ( D. teugelsi, D. fasciolatus ) revealed by the resulting phylogenies are likely a consequence of post-divergence introgressive hybridization and/or incomplete lineage sorting due to recent speciation. Historical biogeographic findings are both in agreement and conflict with previous studies of other continent-wide African freshwater fish genera, suggesting a complex scenario for the assemblage of Africa’s continental ichthyofaunal communities.


2006 ◽  
Vol 31 (3) ◽  
pp. 560-570 ◽  
Author(s):  
Mike Thiv ◽  
Mats Thulin ◽  
Norbert Kilian ◽  
H. Peter Linder

We investigated the colonization of the Indian Ocean archipelago of Socotra through phylogenetic analysis of Aerva (Amaranthaceae) based on nuclear and plastid DNA sequence data. The biogeographic history of the genus was tracked using ancestral area reconstructions and molecular dating. Three independent colonization lineages from the Eritreo-Arabian subregion of the Sudano-Zambesian Region were revealed: one endemic clade comprising Aerva revoluta / A. microphylla and once within A. lanata and A. javanica. Our results provide further support for the dominance of Eritreo-Arabian affinities in the flora of Socotra, in contrast to more rare affinities to Madagascar, the Mascarenes, southern Africa, and tropical Asia. Our data point towards colonization via dispersal, rather than a vicariance origin of the island elements. The overall biogeographic patterns of Aerva show only limited concordance with other taxonomic groups distributed on Indian Ocean islands.


Zootaxa ◽  
2017 ◽  
Vol 4250 (6) ◽  
pp. 577 ◽  
Author(s):  
MICHAEL J. GHEDOTTI ◽  
MATTHEW P. DAVIS

The fossils species †Fundulus detillae, †F. lariversi, and †F. nevadensis from localities in the western United States are represented by well-preserved material with date estimations. We combined morphological data for these fossil taxa with morphological and DNA-sequence data to conduct a phylogenetic analysis and a tip-based divergence-time estimation for the family Fundulidae. The resultant phylogeny is largely concordant with the prior total-evidence phylogeny. The fossil species do not form a monophyletic group, and do not represent a discrete western radiation of Fundulus as previously proposed. The genus Fundulus diverged into subgeneric clades likely in the Eocene or Oligocene (mean age 34.6 mya, 53–23 mya), and all subgeneric and most species-group clades had evolved by the middle Miocene. †Fundulus lariversi is a member of subgenus Fundulus in which all extant species are found only in eastern North America, demonstrating that fundulids had a complicated biogeographic history. We confirmed †Fundulus detillae as a member of the subgenus Plancterus. †F. nevadensis is not classified in a subgenus but likely is related to the subgenera Plancterus and Wileyichthys. 


2020 ◽  
Author(s):  
Yunheng Ji ◽  
Changkun Liu ◽  
Jacob B Landis ◽  
Min Deng ◽  
Jiahui Chen

Abstract Background and Aims Cephalotaxus is a paleo-endemic genus in East Asia that consists of ~7–9 conifer species. Despite its great economic and ecological importance, the relationships between Cephalotaxus and related genera, as well as the interspecific relationships within Cephalotaxus, have long been controversial, resulting in contrasting taxonomic proposals in delimitation of Cephalotaxaceae and Taxaceae. Based on plastome data, this study aims to reconstruct a robust phylogeny to infer the systematic placement and the evolutionary history of Cephalotaxus. Methods A total of eleven plastomes, representing all species currently recognized in Cephalotaxus and two Torreya species, were sequenced and assembled. Combining these with previously published plastomes, we reconstructed a phylogeny of Cephalotaxaceae and Taxaceae with nearly full taxonomic sampling. Under a phylogenetic framework and molecular dating, the diversification history of Cephalotaxus and allied genera was explored. Key Results Phylogenetic analyses of 81 plastid protein-coding genes recovered robust relationships between Cephalotaxus and related genera, as well as providing a well-supported resolution of interspecific relationships within Cephalotaxus, Taxus, Torreya and Amentotaxus. Divergence time estimation indicated that most extant species of these genera are relatively young, although fossil and other molecular evidence consistently show these genera are ancient plant lineages. Conclusions Our results justify the taxonomic proposal that recognizes Cephalotaxaceae as a monotypic family, and contribute to a clear-cut delineation between Cephalotaxaceae and Taxaceae. Given that extant species of Cephalotaxus are derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and Pleistocene climatic fluctuations, they are not evolutionary relics.


AoB Plants ◽  
2021 ◽  
Author(s):  
Min-Jie Li ◽  
Huan-Xi Yu ◽  
Xian-Lin Guo ◽  
Xing-Jin He

Abstract The disjunctive distribution (Europe-Caucasus-Asia) and species diversification across Eurasia for the genus Allium sect. Daghestanica has fascinating attractions for researchers aiming to understanding the development and history of the modern Eurasia flora. However, no any studies have been carried out to address the evolutionary history of this section. Based on the nrITS and cpDNA fragments (trnL-trnF and rpl32-trnL), the evolutionary history of the third evolutionary line (EL3) of the genus Allium was reconstructed and we further elucidate the evolutionary line of sect. Daghestanica under this background. Our molecular phylogeny recovered two highly supported clades in sect. Daghestanica: the Clade I includes Caucasian-European species and Asian A. maowenense, A. xinlongense and A. carolinianum collected in Qinghai; the Clade II comprises Asian yellowish tepal species, A. chrysanthum, A. chrysocephalum, A. herderianum, A. rude and A. xichuanense. The divergence time estimation and biogeography inference indicated that Asian ancestor located in the QTP and the adjacent region could have migrated to Caucasus and Europe distributions around the Late Miocene and resulted in further divergence and speciation; Asian ancestor underwent the rapid radiation in the QTP and the adjacent region most likely due to the heterogeneous ecology of the QTP resulted from the orogeneses around 4–3 Mya. Our study provides a picture to understand the origin and species diversification across Eurasia for sect. Daghestanica.


Author(s):  
Ya-Lian Wang ◽  
Jin-Ming Lu ◽  
Yuan Zhang ◽  
Hong-Wei Chen

Abstract The Stegana (Steganina) shirozui species group is mainly distributed in East Asia. In the present study, the molecular phylogeny of the S. shirozui group was investigated based on mitochondrial (COI and ND2) and nuclear (28S rRNA) markers. The resulting trees support the S. shirozui group as monophyletic and indicate that in this group, species associated with closer affinities show higher structural homogeneity in male genitalia. Molecular species delimitation assess most species limits and recognize four new species in the S. shirozui group from south-west China: S. alianya sp. nov., S. diodonta sp. nov., S. zebromyia sp. nov. and S. zopheria sp. nov. One new synonym was also recognized. Additionally, three typical male genital characters of the S. shirozui group were placed on the molecular phylogenetic framework. The outcome of both divergence-time estimation and ancestral area reconstruction suggests that the S. shirozui group likely originated in south-west China in the Middle Miocene.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kole F. Adelalu ◽  
Xu Zhang ◽  
Xiaojian Qu ◽  
Jacob B. Landis ◽  
Jun Shen ◽  
...  

Investigating the biogeographical disjunction of East Asian and North American flora is key to understanding the formation and dynamics of biodiversity in the Northern Hemisphere. The small Cupressaceae genus Thuja, comprising five species, exhibits a typical disjunct distribution in East Asia and North America. Owing to obscure relationships, the biogeographical history of the genus remains controversial. Here, complete plastomes were employed to investigate the plastome evolution, phylogenetic relationships, and biogeographic history of Thuja. All plastomes of Thuja share the same gene content arranged in the same order. The loss of an IR was evident in all Thuja plastomes, and the B-arrangement as previously recognized was detected. Phylogenomic analyses resolved two sister pairs, T. standishii-T. koraiensis and T. occidentalis-T. sutchuenensis, with T. plicata sister to T. occidentalis-T. sutchuenensis. Molecular dating and biogeographic results suggest the diversification of Thuja occurred in the Middle Miocene, and the ancestral area of extant species was located in northern East Asia. Incorporating the fossil record, we inferred that Thuja likely originated from the high-latitude areas of North America in the Paleocene with a second diversification center in northern East Asia. The current geographical distribution of Thuja was likely shaped by dispersal events attributed to the Bering Land Bridge in the Miocene and subsequent vicariance events accompanying climate cooling. The potential effect of extinction may have profound influence on the biogeographical history of Thuja.


2011 ◽  
Vol 25 (2) ◽  
pp. 106 ◽  
Author(s):  
Prashant P. Sharma ◽  
Gonzalo Giribet

We investigated the internal phylogeny of Laniatores, the most diverse suborder of Opiliones, using sequence data from 10 molecular loci: 12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase subunit I (COI), cytochrome b, elongation factor-1α, histones H3 and H4, and U2 snRNA. Exemplars of all previously described families of Laniatores were included, in addition to two families – Petrobunidae, fam. nov. and Tithaeidae, fam. nov. – that we erect herein. Data analyses were based on maximum likelihood and Bayesian approaches on static alignments, and included phylogenetic tree estimation, molecular dating, and biogeographic analysis of ancestral area reconstruction. The results obtained include the monophyly of Laniatores and the infraorder Grassatores – the focus of this study – as well as support for numerous interfamilial relationships. The two new families described cluster with other South-east Asian families (Podoctidae and Epedanidae). Diversification of Laniatores is estimated at ~348 Mya, and origin of most Grassatores superfamilies occurs in a ~25 million year span of time immediately after the end-Permian mass extinction (254 Mya). Ancestral range reconstruction of the clade (Samooidea + Zalmoxoidea) suggests that the ancestral range of Samooidea comprises West Tropical Gondwana (West Africa + Neotropics), whereas that of Zalmoxoidea is exclusively Neotropical. The following additional taxonomic changes are proposed: (1) Remyus is transferred to Phalangodidae, and (2) Escadabiidae and Kimulidae are transferred to Zalmoxoidea.


Sign in / Sign up

Export Citation Format

Share Document