scholarly journals Quantitative Toxicity Prediction via Ensembling of Heterogeneous Predictors

2019 ◽  
Author(s):  
Abdul Karim ◽  
Vahid Riahi ◽  
Avinash Mishra ◽  
Abdollah Dehzangi ◽  
M. A. Hakim Newton ◽  
...  

Abstract Representing molecules in the form of only one type of features and using those features to predict their activities is one of the most important approaches for machine-learning-based chemical-activity-prediction. For molecular activities like quantitative toxicity prediction, the performance depends on the type of features extracted and the machine learning approach used. For such cases, using one type of features and machine learning model restricts the prediction performance to specific representation and model used. In this paper, we study quantitative toxicity prediction and propose a machine learning model for the same. Our model uses an ensemble of heterogeneous predictors instead of typically using homogeneous predictors. The predictors that we use vary either on the type of features used or on the deep learning architecture employed. Each of these predictors presumably has its own strengths and weaknesses in terms of toxicity prediction. Our motivation is to make a combined model that utilizes different types of features and architectures to obtain better collective performance that could go beyond the performance of each individual predictor. We use six predictors in our model and test the model on four standard quantitative toxicity benchmark datasets. Experimental results show that our model outperforms the state-of-the-art toxicity prediction models in 8 out of 12 accuracy measures. Our experiments show that ensembling heterogeneous predictor improves the performance over single predictors and homogeneous ensembling of single predictors.The results show that each data representation or deep learning based predictor has its own strengths and weaknesses, thus employing a model ensembling multiple heterogeneous predictors could go beyond individual performance of each data representation or each predictor type.

Author(s):  
Park Gi-Hun Et.al

The purpose of this thesis was to select a cable-stayed bridge to which external force may cause damage as the subject, to develop a damage detection deep learning method capable of detecting cable damage, and to test and verify the developed damage detection deep learning method. The damage detection method was developed as a system that utilizes the acceleration response of a structure measured for maintenance purposes. To extract information capable of identifying the damage locations from among the measured acceleration responses, a CNN ID was used to develop the damage detection deep learning method. The developed damage detection deep learning method was developed in a way not independently arranging 1 machine learning model per each measuring point and finally predicting the damage location based on the decision-making results collected from each machine learning model. The developed damage detection deep learning method performed the learning per each machine learning model by utilizing the acceleration response of a structure acquired based on the preliminary damage test. Finally, the damage detection deep learning method that completed the learning verified the cable damage location detection performance by utilizing the data acquired based on the cable-stayed bridge damage test. As a result, it was confirmed that the developed damage detection deep learning method predicted the damage location of a cable-stayed bridge at an average accuracy of 89%. In the current research, only the cable-stayed bridge of the Seohaegyo Bridge was studied, but in the improved study, the research will be conducted on other bridges and damage assessment will be conducted on all cables.


Author(s):  
Akshata Kulkarni

Abstract: Officials around the world are using several COVID-19 outbreak prediction models to make educated decisions and enact necessary control measures. In this study, we developed a Machine Learning model which predicts and forecasts the COVID-19 outbreak in India, with the goal of determining the best regression model for an in-depth examination of the novel coronavirus. Based on data available from January 31 to October 31, 2020, collected from Kaggle, this model predicts the number of confirmed cases in Maharashtra. We're using a Machine Learning model to foresee the future trend of these situations. The project has the potential to demonstrate the importance of information dissemination in improving response time and planning ahead of time to help reduce risk.


Author(s):  
S. Sasikala ◽  
S. J. Subhashini ◽  
P. Alli ◽  
J. Jane Rubel Angelina

Machine learning is a technique of parsing data, learning from that data, and then applying what has been learned to make informed decisions. Deep learning is actually a subset of machine learning. It technically is machine learning and functions in the same way, but it has different capabilities. The main difference between deep and machine learning is, machine learning models become well progressively, but the model still needs some guidance. If a machine learning model returns an inaccurate prediction, then the programmer needs to fix that problem explicitly, but in the case of deep learning, the model does it by itself. Automatic car driving system is a good example of deep learning. On other hand, Artificial Intelligence is a different thing from machine learning and deep learning. Deep learning and machine learning both are the subsets of AI.


2020 ◽  
Vol 23 (4) ◽  
pp. 3233-3253 ◽  
Author(s):  
Rahim Taheri ◽  
Reza Javidan ◽  
Mohammad Shojafar ◽  
P. Vinod ◽  
Mauro Conti

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregor Lichtner ◽  
Felix Balzer ◽  
Stefan Haufe ◽  
Niklas Giesa ◽  
Fridtjof Schiefenhövel ◽  
...  

AbstractIn a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in critically ill COVID-19 patients can be predicted by a model trained on critically ill non-COVID-19 viral pneumonia patients. We trained gradient boosted decision tree models on 718 (245 deceased) non-COVID-19 viral pneumonia patients to predict individual ICU mortality and applied it to 1054 (369 deceased) COVID-19 patients. Our model showed a significantly better predictive performance (AUROC 0.86 [95% CI 0.86–0.87]) than the clinical scores APACHE2 (0.63 [95% CI 0.61–0.65]), SAPS2 (0.72 [95% CI 0.71–0.74]) and SOFA (0.76 [95% CI 0.75–0.77]), the COVID-19-specific mortality prediction models of Zhou (0.76 [95% CI 0.73–0.78]) and Wang (laboratory: 0.62 [95% CI 0.59–0.65]; clinical: 0.56 [95% CI 0.55–0.58]) and the 4C COVID-19 Mortality score (0.71 [95% CI 0.70–0.72]). We conclude that lethal courses in critically ill COVID-19 patients can be predicted by a machine learning model trained on non-COVID-19 patients. Our results suggest that in a pandemic with a novel disease, prognosis models built for similar diseases can be applied, even when the diseases differ in time courses and in rates of critical and lethal courses.


2020 ◽  
Author(s):  
Hyung-Jun Kim ◽  
Deokjae Han ◽  
Jeong-Han Kim ◽  
Daehyun Kim ◽  
Beomman Ha ◽  
...  

BACKGROUND Prioritizing patients in need of intensive care is necessary to reduce the mortality rate during the COVID-19 pandemic. Although several scoring methods have been introduced, many require laboratory or radiographic findings that are not always easily available. OBJECTIVE The purpose of this study was to develop a machine learning model that predicts the need for intensive care for patients with COVID-19 using easily obtainable characteristics—baseline demographics, comorbidities, and symptoms. METHODS A retrospective study was performed using a nationwide cohort in South Korea. Patients admitted to 100 hospitals from January 25, 2020, to June 3, 2020, were included. Patient information was collected retrospectively by the attending physicians in each hospital and uploaded to an online case report form. Variables that could be easily provided were extracted. The variables were age, sex, smoking history, body temperature, comorbidities, activities of daily living, and symptoms. The primary outcome was the need for intensive care, defined as admission to the intensive care unit, use of extracorporeal life support, mechanical ventilation, vasopressors, or death within 30 days of hospitalization. Patients admitted until March 20, 2020, were included in the derivation group to develop prediction models using an automated machine learning technique. The models were externally validated in patients admitted after March 21, 2020. The machine learning model with the best discrimination performance was selected and compared against the CURB-65 (confusion, urea, respiratory rate, blood pressure, and 65 years of age or older) score using the area under the receiver operating characteristic curve (AUC). RESULTS A total of 4787 patients were included in the analysis, of which 3294 were assigned to the derivation group and 1493 to the validation group. Among the 4787 patients, 460 (9.6%) patients needed intensive care. Of the 55 machine learning models developed, the XGBoost model revealed the highest discrimination performance. The AUC of the XGBoost model was 0.897 (95% CI 0.877-0.917) for the derivation group and 0.885 (95% CI 0.855-0.915) for the validation group. Both the AUCs were superior to those of CURB-65, which were 0.836 (95% CI 0.825-0.847) and 0.843 (95% CI 0.829-0.857), respectively. CONCLUSIONS We developed a machine learning model comprising simple patient-provided characteristics, which can efficiently predict the need for intensive care among patients with COVID-19.


2021 ◽  
Author(s):  
Li Linwei ◽  
Yiping Wu ◽  
Miao Fasheng ◽  
Xue Yang ◽  
Huang Yepiao

Abstract Constructing an accurate and stable displacement prediction model is essential to build a capable early warning system for landslide disasters. To overcome the drawbacks of previous displacement prediction models for step-like landslides, such as the incomplete or excessive decompositions of cumulative displacements and input factors and the redundancy or lack of input factors, we propose an adaptive hybrid machine learning model. This model is composed of three parts. First, candidate factors are proposed based on the macroscopic deformation response of landslides. Then, the landslide displacement and its candidate factors are adaptively decomposed into different displacement and factor components by applying optimized variational mode decomposition (OVMD). Second, in the gray wolf optimizer-based kernel extreme learning machine (GWO-KELM) model, the global sensitivity analysis (GSA) of the prediction results of different displacement components to each decomposed factor is analyzed based on the PAWN method. Then, the decomposed factors are reduced according to the GSA results. Third, based on the reduced factors, the optimal GWO-KELM models of the different displacement components are established to predict the displacement. Taking the Baishuihe landslide as an example, we used the raw data of three representative monitoring sites from June 2006 to December 2016 to verify the validity, accuracy, and stability of the model. The results indicate that the proposed hybrid model can effectively determine the displacement decomposition parameters. In addition, this model performed well over a three-year forecast with low model complexity.


Author(s):  
C. Selvi ◽  
R. Shalini ◽  
V. Navaneethan ◽  
L. Santhiya

An University’s reputation and its standard are weighted by its students performance and their part in the future economic prosperity of the nation, hence a novel method of predicting the student’s upcoming academic performance is really essential to provide a pre-requisite information upon their performances. A machine learning model can be developed to predict the student’s upcoming scores or their entire performance depending upon their previous academic performances.


Sign in / Sign up

Export Citation Format

Share Document