The analysis of groundwater nitrate pollution and health risk assessment in Rural Areas of Yantai

2020 ◽  
Author(s):  
Guimei Yu ◽  
Song song Wang ◽  
Jiu Wang ◽  
Lei Liu ◽  
Yun Li ◽  
...  

Abstract Background: Nitrate is one of the most common chemical contaminants of groundwater, and it is an important unqualified factor of rural groundwater in Yantai. In order to assess the risk of exposure to drinking water nitrate for adults and juveniles, in recent years, we monitored the nitrate concentrations in rural drinking water, the HHRA model was also used to assess the human health risk of nitrate pollution in groundwater. Methods : From the year 2015 to 2018, the drinking water in rural areas of Yantai was tested according to the "Sanitary Standard for Drinking Water" (GB5749-2006). The principal component analysis was used to analyze the relationship between groundwater chemicals and nitrate. The HHRA model was used to assess human health risks of groundwater nitrate through the drinking water and skin contact. Results : A total of 2348 samples were tested during the year 2015-2018.Nitrate and total dissolved solids, total hardness, chloride are all relevant, the above indicators may come from the same source of pollution; The median nitrate content (C EXP50 ) was 17.8 mg / L; the C EXP95 was 53.4 mg / L; the risk of exposure in each group was ranked as: Juveniles > Adult female > Adult male;hazard quotient HQ 50 and HQ 95 for minors and adults exceed 1. Conclusions :The concentrations of nitrate is stable and does not change over time.The high concentration of nitrate in rural areas of Yantai may be the result of the interaction of fertilizers and geological factors. The risk of exposure to nitrate in juveniles and adults is above the limit, and HQ is over 1, so it is necessary to be on the alert for the high levels of nitrate.

2020 ◽  
Author(s):  
Guimei Yu ◽  
Jiu Wang ◽  
Lei Liu ◽  
Yun Li ◽  
Yi Zhang ◽  
...  

Abstract Background:Nitrate is one of the most common chemical contaminants of groundwater, and it is an important unqualified factor of rural groundwater in Yantai. In order to assess the risk of exposure to drinking water nitrate for adults and juveniles, in recent years, we monitored the nitrate concentrations in rural drinking water,a model was also used to assess the human health risk of nitrate pollution in groundwater. Methods: From the year 2015 to 2018, the drinking water in rural areas of Yantai was tested according to the "Sanitary Standard for Drinking Water" (GB5749-2006). The principal component analysis was used to analyze the relationship between groundwater chemicals and nitrate. The model was used to assess human health risks of groundwater nitrate through the drinking water and skin contact. Results: A total of 2348 samples were tested during the year 2015-2018.Nitrate and total dissolved solids, total hardness, chloride are all relevant, the above indicators may come from the same source of pollution; The median nitrate content (CEXP50) was 17.8 mg / L; the risk of exposure in each group was ranked as: Juveniles > Adult female > Adult male;the median health risk (HQ50) for minors and adults exceed 1. Conclusions:The concentrations of nitrate is stable and does not change over time.The high concentration of nitrate in rural areas of Yantai may be the result of the interaction of fertilizers and geological factors. The risk of exposure to nitrate in juveniles and adults is above the limit, so it is necessary to be on the alert for the high levels of nitrate.


2019 ◽  
pp. 45-58 ◽  
Author(s):  
Hui Tian ◽  
Xiujuan Liang ◽  
Yan Gong ◽  
Zhuang Kang ◽  
Hongtao Jin

High concentrations of nitrate in groundwater pose a threat to human health. To quantify groundwater nitrate pollution in China's Changchun New District and evaluate its human health risks, 98 groundwater samples were collected and analyzed. The spatial distribution of groundwater chemical components was variable with concentrations descending from TDS > HCO3− > Ca2+ > NO3− > SO42- > Na+ > Cl− > Mg2+ > K+ > NO2− > NH4+. Notably, NO3− concentrations ranged from 0.02–492.72 mg/L and averaged 98.62 mg/L. Over 50% of samples exceeded the Quality Standard for Groundwater of China Class III N threshold (20 mg/L). Principal component analysis determined that NO3 contamination was primarily due to the excessive use of fertilizers in agriculture. A human health risk assessment model was used to assess the potential health risks of groundwater NO3− via drinking water and skin contact pathways. Approximately 90% of adults, 66% of children, and 45% of infants had acceptable health risks in the study area. NO3− exposure risk in the towns of Longjia and Xiyingcheng was the highest, while urban areas tended to have lower exposures. The health risks of residents, especially minors and infants, were concerned.


2015 ◽  
Vol 41 (2) ◽  
pp. 21-27 ◽  
Author(s):  
Sławomir Garboś ◽  
Dorota Święcicka

Abstract Uranium concentrations in groundwater taken from private drilled wells have been never determined in Poland, implying a lack of available data to quantify the human exposure to U through drinking water consumption, especially in rural areas influenced by mining activities. The main aim of the study was the assessment of human health risk related to the consumption of well waters containing U, collected from selected rural areas of the Lower Silesian region (Poland). The random daytime (RDT) sampling method was applied to the collection of well waters from three control study areas (CSA): Mniszków (CSA-A), Stara Kamienica/M. Kamienica/Kopaniec (CSA-B) and Kletno (CSA-C). The analyses of RDT samples were performed by validated method based on inductively coupled plasma mass spectrometry (ICP-MS). Uranium concentration ranges in well waters and the estimated geometric means for individual control study areas were: 0.005-1.03 μg/L and 0.052 μg/L (CSA-A), 0.027-10.6 μg/L and 0.40 μg/L (CSA-B), and 0.006-27.1 μg/L and 0.38 μg/L (CSA-C). The average and individual chronic daily intakes (CDI) of U by drinking water pathway (adults/children) were in the ranges of: 0.0017-0.013/0.0052-0.040 μg · kg-1 · day-1 and 0.0002-0.90/0.0005-2.71 μg · kg-1 · day-1. The average %TDI and ranges of individual %TDI (adults/children) were: 0.17%/0.52% and 0.02-3.4%/0.05-10.3% (CSA-A), 1.3%/4.0% and 0.09-35%/0.27-106% (CSA-B), and 1.3%/3.8% and 0.02-90%/0.06-271% (CSA-C). The estimated average CDI values of U through well water are significantly lower than the TDI (1 μg · kg-1 · day-1), while for individual CDI values the contribution to the TDI can reach even 90% (adults) and 271% (children), indicating essential human health risk for children consuming well water from private drilled wells located in CSA-B and CSA-C (5.3% of total number of samples collected).


2013 ◽  
Vol 60 ◽  
pp. 93-101 ◽  
Author(s):  
Sardar Khan ◽  
Maria Shahnaz ◽  
Noor Jehan ◽  
Shafiqur Rehman ◽  
M. Tahir Shah ◽  
...  

2019 ◽  
Vol 180 ◽  
pp. 549-556 ◽  
Author(s):  
Sarva Mangala Praveena ◽  
Maizatul Zahirah Mohd Rashid ◽  
Fauzan Adzima Mohd Nasir ◽  
Wee Sze Yee ◽  
Ahmad Zaharin Aris

Sign in / Sign up

Export Citation Format

Share Document