Whole transcriptome analysis of human lung tissue to identify COPD-associated gene
Abstract Identification of the dysfunctional genes in human lung from patients with Chronic obstructive pulmonary disease (COPD) will help up to understand the pathology of this disease. Here, using transcriptomic data of lung tissue for 91 COPD cases and 182 matched healthy controls from the Genotype-Tissue Expression (GTEx) database. Employing a stringent model controlling for known covariates and hidden confounders, we identified 1,359 significant differentially expressed genes (DEG) with 707 upregulated and 602 downregulated respectively. We evaluated the identified DEGs in an independent microarray cohort of 219 COPD and 108 controls, demonstrating the robustness of our result. Functional annotation of COPD-associated genes highlighted the activation of complement cascade, dysregulation of inflammatory response and extracellular matrix organization in the COPD patients. In addition, we identified several novel key-hub genes involved in the COPD pathogenesis using a network analysis method. In summary, our study represents the comprehensive analysis of gene expression on COPD with the largest sample size providing great resource for the molecular research in the COPD community.