scholarly journals Bioengineering microfluidic organoids-on-a-chip

2020 ◽  
Author(s):  
Mikhail Nikolaev ◽  
Olga Mitrofanova ◽  
Nicolas Broguiere ◽  
Sara Geraldo ◽  
Yoji Tabata ◽  
...  

Abstract Organoids derived from epithelial stem cells have emerged as powerful platforms to model development and disease in a dish1-3. However, the current mismatch in anatomy, lifespan and size between native organs and their in vitro counterparts severely limits their applicability4. In particular, the closed, cystic architecture of most epithelial stem cell-derived organoids makes experimental manipulation and assay development cumbersome. Here we describe how tissue engineering and cellular self-organization can be combined to guide in vitro organogenesis into openly accessible, functional intestinal tubes termed ‘mini-guts’. Intestinal stem cells (ISCs) rapidly generate simple columnar epithelia when propagated inside basal lamina-like hydrogel scaffolds that feature a tubular and crypt-containing, in vivo-like anatomical structure. Using a microfluidic perfusion system, dead cells shed into the lumen can be continuously removed from the mini-guts. This increases tissue lifespan to months, establishing a homeostatic organoid culture system in which cell proliferation (in crypts) is balanced with cell death (in villus-like domains). The approach developed here can be extended to generate functional tissue/organ models from other epithelial cell types, including primary human stem/progenitor cells from the small intestine, colon or airway, permitting reconstitution of complex organ-level physiology and disease in a personalized manner.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Angela Maria Cozzolino ◽  
Valeria Noce ◽  
Cecilia Battistelli ◽  
Alessandra Marchetti ◽  
Germana Grassi ◽  
...  

In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that,in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines asin vitromodels of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1306
Author(s):  
Ann-Kristin Afflerbach ◽  
Mark D. Kiri ◽  
Tahir Detinis ◽  
Ben M. Maoz

The human-relevance of an in vitro model is dependent on two main factors—(i) an appropriate human cell source and (ii) a modeling platform that recapitulates human in vivo conditions. Recent years have brought substantial advancements in both these aspects. In particular, mesenchymal stem cells (MSCs) have emerged as a promising cell source, as these cells can differentiate into multiple cell types, yet do not raise the ethical and practical concerns associated with other types of stem cells. In turn, advanced bioengineered in vitro models such as microfluidics, Organs-on-a-Chip, scaffolds, bioprinting and organoids are bringing researchers ever closer to mimicking complex in vivo environments, thereby overcoming some of the limitations of traditional 2D cell cultures. This review covers each of these advancements separately and discusses how the integration of MSCs into novel in vitro platforms may contribute enormously to clinical and fundamental research.


Placenta ◽  
2011 ◽  
Vol 32 ◽  
pp. S336
Author(s):  
F. Marongiu ◽  
R. Gramignoli ◽  
S. Doratiotto ◽  
M. Serra ◽  
M. Sini ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Toshikatsu Matsui ◽  
Tadahiro Shinozawa

Organoids are three-dimensional structures fabricated in vitro from pluripotent stem cells or adult tissue stem cells via a process of self-organization that results in the formation of organ-specific cell types. Human organoids are expected to mimic complex microenvironments and many of the in vivo physiological functions of relevant tissues, thus filling the translational gap between animals and humans and increasing our understanding of the mechanisms underlying disease and developmental processes. In the last decade, organoid research has attracted increasing attention in areas such as disease modeling, drug development, regenerative medicine, toxicology research, and personalized medicine. In particular, in the field of toxicology, where there are various traditional models, human organoids are expected to blaze a new path in future research by overcoming the current limitations, such as those related to differences in drug responses among species. Here, we discuss the potential usefulness, limitations, and future prospects of human liver, heart, kidney, gut, and brain organoids from the viewpoints of predictive toxicology research and drug development, providing cutting edge information on their fabrication methods and functional characteristics.


2016 ◽  
Author(s):  
Rokhsareh Rohban ◽  
Nathalie Etchart ◽  
Thomas R. Pieber

AbstractNeo vessel formation can be initiated by co-transplantation of mesenchymal stem cells (MSC) with endothelial colony-forming cells (ECFC). The two adult stem cell types can be isolated and expanded from a variety of tissues to be used for regenerative applications pro-angiogenesis.Here we performed a systematic study to evaluate the neo-vasculogenesis potential of MSC and ECFC isolated from various human tissues. MSC were isolated, purified and expanded in vitro from umbilical cord (UC) and umbilical cord blood (UCB), white adipose tissue (WAT), bone marrow (BM), and amniotic membrane of placenta (AMN).ECFC were isolated from UC and UCB, WAT and peripheral blood (PB). ECFC and MSC and were co-transplanted admixed with extracellular matrix (Matrigel®) at a ratio of 5:1 to immune-deficient NSG mice, subcutaneously. The transplants were harvested after two weeks and the state of vessel formation and stability in the explants were investigated using immune-histochemical methods. The number of created micro-vessels was quantified using Hematoxylin & Eosin (H&E) staining followed by image J quantification.Results showed that ECFC and MSC possess variable capacity in contributing to neo-vasculogenesis. WAT and UCB-derived ECFC and WAT, UCB and BM-derived MSC are most potent cells in terms of neo-vessel formation in vivo. UC-derived ECFC and AMN-derived MSC have been shown to be least potent in contributing to neo-vasculogenesis. This variability might be due to variable phenotypes, or different genetic profiles of MSC and ECFC isolated from different tissues and/or donors.The findings might give an insight into better regenerative strategies for neo-vessel formation in vivo.


Author(s):  
Eszter Posfai ◽  
John Paul Schell ◽  
Adrian Janiszewski ◽  
Isidora Rovic ◽  
Alexander Murray ◽  
...  

AbstractTotipotency is the ability of a single cell to give rise to all the differentiated cells that build the conceptus, yet how to capture this property in vitro remains incompletely understood. Defining totipotency relies upon a variety of assays of variable stringency. Here we describe criteria to define totipotency. We illustrate how distinct criteria of increasing stringency can be used to judge totipotency by evaluating candidate totipotent cell types in the mouse, including early blastomeres and expanded or extended pluripotent stem cells. Our data challenge the notion that expanded or extended pluripotent states harbor increased totipotent potential relative to conventional embryonic stem cells under in vivo conditions.


Gut ◽  
2018 ◽  
Vol 68 (6) ◽  
pp. 1003-1013 ◽  
Author(s):  
Terrence E Riehl ◽  
David Alvarado ◽  
Xueping Ee ◽  
Aaron Zuckerman ◽  
Lynn Foster ◽  
...  

ObjectiveLactobacillus rhamnosus GG (LGG), a probiotic, given by gavage is radioprotective of the mouse intestine. LGG-induced radioprotection is toll-like receptor 2 (TLR2) and cyclooxygenase-2 (COX-2)-dependent and is associated with the migration of COX-2+mesenchymal stem cells (MSCs) from the lamina propria of the villus to the lamina propria near the crypt epithelial stem cells. Our goals were to define the mechanism of LGG radioprotection including identification of the TLR2 agonist, and the mechanism of the MSC migration and to determine the safety and efficacy of this approach in models relevant to clinical radiation therapy.DesignIntestinal radioprotection was modelled in vitro with cell lines and enteroids as well as in vivo by assaying clinical outcomes and crypt survival. Fractionated abdominal and single dose radiation were used along with syngeneic CT26 colon tumour grafts to assess tumour radioprotection.ResultsLGG with a mutation in the processing of lipoteichoic acid (LTA), a TLR2 agonist, was not radioprotective, while LTA agonist and native LGG were. An agonist of CXCR4 blocked LGG-induced MSC migration and LGG-induced radioprotection. LGG given by gavage induced expression of CXCL12, a CXCR4 agonist, in pericryptal macrophages and depletion of macrophages by clodronate liposomes blocked LGG-induced MSC migration and radioprotection. LTA effectively protected the normal intestinal crypt, but not tumours in fractionated radiation regimens.ConclusionsLGG acts as a ‘time-release capsule’ releasing radioprotective LTA. LTA then primes the epithelial stem cell niche to protect epithelial stem cells by triggering a multicellular, adaptive immune signalling cascade involving macrophages and PGE2 secreting MSCs.Trial registration numberNCT01790035; Pre-results.


2009 ◽  
Vol 7 (1) ◽  
pp. nrs.07010 ◽  
Author(s):  
Catherine C. Thompson

The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling.


2019 ◽  
Vol 30 (16) ◽  
pp. 1985-1999 ◽  
Author(s):  
Lucas R. Smith ◽  
Jerome Irianto ◽  
Yuntao Xia ◽  
Charlotte R. Pfeifer ◽  
Dennis E. Discher

Tissue regeneration at an injured site depends on proliferation, migration, and differentiation of resident stem or progenitor cells, but solid tissues are often sufficiently dense and constricting that nuclei are highly stressed by migration. In this study, constricted migration of myoblastic cell types and mesenchymal stem cells (MSCs) increases nuclear rupture, increases DNA damage, and modulates differentiation. Fewer myoblasts fuse into regenerating muscle in vivo after constricted migration in vitro, and myodifferentiation in vitro is likewise suppressed. Myosin II inhibition rescues rupture and DNA damage, implicating nuclear forces, while mitosis and the cell cycle are suppressed by constricted migration, consistent with a checkpoint. Although perturbed proliferation fails to explain defective differentiation, nuclear rupture mislocalizes differentiation-relevant MyoD and KU80 (a DNA repair factor), with nuclear entry of the DNA-binding factor cGAS. Human MSCs exhibit similar damage, but osteogenesis increases—which is relevant to bone and to calcified fibrotic tissues, including diseased muscle. Tissue repair can thus be modulated up or down by the curvature of pores through which stem cells squeeze.


1998 ◽  
Vol 10 (8) ◽  
pp. 535 ◽  
Author(s):  
T. A. Pelton ◽  
M. D. Bettess ◽  
J. Lake ◽  
J. Rathjen ◽  
P. D. Rathjen

Early mammalian embryogenesis is characterised by the coordinated proliferation, differentiation, migration and apoptosis of a pluripotent cell pool that is able to give rise to extraembryonic lineages and all the cell types of the embryo proper. These cells retain pluripotent differentiation capability, defined in this paper as the ability to form all cell types of the embryo and adult, until differentiation into the three embryonic germ layers at gastrulation. Our understanding of pluripotent cell biology and molecular regulation has been hampered by the difficulties associated with experimental manipulation of these cells in vivo. However, a more detailed understanding of pluripotent cell behaviour is emerging from the application of molecular technologies to early mouse embryogenesis. The construction of mouse mutants by gene targeting, mapping of gene expression in vivo, and modelling of cell decisions in vitro are providing insight into the cellular origin, identity and action of key developmental regulators, and the nature of pluripotent cells themselves. In this review we discuss the properties of early embryonic pluripotent cells in vitro and in vivo, focusing on progression from inner cell mass (ICM) cells in the blastocyst to the onset of gastrulation.


Sign in / Sign up

Export Citation Format

Share Document