scholarly journals Study of the Application of Terrestrial Laser Scanning for Identification of Pathologies in Concrete Structures

Author(s):  
Sergio Orlando Antoun Netto ◽  
Lucas Pires Chagas Ferreira de Carvalho ◽  
Ana Waldila de Queiroz Ramiro Reis ◽  
Leonardo Vieira Barbalho ◽  
Lucas de Campos Rodrigues

Abstract Laser scanning enhances classic field surveys. The terrestrial laser scanner is a versatile device with applications in various areas of knowledge, which uses remote sensing fundamentals to determine point coordinates. It is a remote, active, noninvasive, nondestructive and high-precision technique to capture reality that records from thousands to millions of points per second in a detailed representation of the situation called a point cloud. The surveys are performed along the object of interest in a process called scanning, which has as its gross product a dense cloud of three-dimensional points of the scanned object. This point cloud stores information about the object’s geometry, return pulse intensity, and point color data. As a way of extending the uses of terrestrial laser scanning, this work studies the application of this method in civil engineering, through the identification of pathologies in reinforced concrete structures, aiming to show how geoinformation can be employed in this area. To this end, a case study of the São Cristóvão Viaduct was conducted in the city of Rio de Janeiro. This study included definition of the site of analysis; planning and execution of the field survey to collect raw data; processing of the point cloud; and generation of a three-dimensional surface for global visualization of the structure and identification of pathological manifestations and the regions where they were observed. Concrete structures in general are affected by various external factors, such as weather and anthropogenic actions, which contribute to their wear.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Peerasit Mahasuwanchai ◽  
Chainarong Athisakul ◽  
Phasu Sairuamyat ◽  
Weerachart Tangchirapat ◽  
Sutat Leelataviwat ◽  
...  

This article presents an alternative method for the long-term monitoring of heritage pagodas in Thailand. In this method, terrestrial laser scanning (TLS) is used in combination with permanent survey markers. The Wat (temple) Krachee in the Ayutthaya Province of Thailand was chosen as a case study. This temple has several fantastic elements, including an inverted bell-shaped pagoda, two intertwined trees growing within it, and a chamber inside the pagoda. The preservation team working on the pagoda encountered a challenging problem and faced a decision to trim or not to trim the tree since it has a long-term effect on the pagoda’s structural stability. A high-accuracy terrestrial laser scanner was used to collect three-dimensional point cloud data. Permanent survey markers were constructed in 2018 to be used in long-term monitoring. The 3D surveying of the temple and the monitoring of the pagoda were carried out in five sessions during a period ending in 2020. A point cloud data analysis was performed to obtain the current dimensions, a displacement analysis, and the pagoda leaning angle. The results revealed that the terrestrial laser scanner is a high-performance piece of equipment offering efficient evaluation and long-term monitoring. However, in this study, permanent survey markers were also required as a benchmark for constraining each monitoring session. The 3D point cloud models could be matched with the assumption model elements to evaluate the damaged shape and to determine the original form. The significant elements of an inverted bell-shaped pagoda were investigated. Trimming the tree was found to cause the leaning angle of the pagoda to decrease. An equation was developed for predicting the leaning angle of the Wat Krachee pagoda for preservation and restoration planning in the future. From the results of this study, it is recommended that periodic monitoring should continue in order to preserve Thai pagodas in their original forms.


Author(s):  
Hatice Çiğdem ZAĞRA ◽  
Sibel ÖZDEN

Aim: This study aims to comparatively evaluate the use potential of orthophoto images obtained by terrestrial laser scanning technologies on an urban scale through the "Old Lapseki Finds Life Project" prepared using terrestrial laser scanning technologies and the "Enez Historical City Square Project" prepared using traditional methods. Method: In the study, street improvement projects of 29.210 m2 Lapseki and 29.214 m2 Enez city designed on an urban scale were evaluated and compared with descriptive statistics based on different parameters. Results: In the study, it has been determined that terrestrial laser (point cloud) technologies are 99,9% accurate when compared to traditional methods, save time by 83,08% and reduce workforce by 80%. In addition, it has been determined that terrestrial laser scanning technologies accelerate project processes compared to traditional methods. Conclusion: In this study, the use of laser scanning technologies, which are basically reverse engineering applications, in architectural restoration projects, determination of the current situation and damage, architectural documentation of structures and preparation of three-dimensional models, in terms of efficiency in survey studies are evaluated. It has been observed that orthophoto images obtained by terrestrial laser scanning technologies in architectural relief-restoration-restitution projects have potentials' worth using in different stages of the project.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881413 ◽  
Author(s):  
Xiangyang Xu ◽  
Hao Yang

The complexity of structural materials is increasing the importance of the technology for high accuracy measurement. How to obtain the displacement information of structural feature points accurately and efficiently is the key issue of deformation analysis. In this article, displacement analysis of a composite arched structure is investigated based on the terrestrial laser scanning technique. A new method based on the measured point cloud is proposed to analyze the displacement of surficial points, resulting in not only the displacement size but also the displacement direction. The innovation lies in extracting the displacement information with a network and remapped point cloud, which is called the network method. The displacement map obtained demonstrates that the transverse displacement in the experiment plays an important role in the safety of the structure, which could not be observed and obtained by the surface approximation method. Therefore, the panorama- and pointwise displacement analysis technologies contribute to ensure the safety of increasingly complex constructions.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2021 ◽  
Vol 1 ◽  
pp. 41-56
Author(s):  
Andrzej Kwinta ◽  
◽  
Robert Gradka ◽  

The objective of the study was to analyse of measurement of moving objects by means of the Total Station (TS) method and Terrestrial Laser Scanning (TLS). The subject of the tests was the “Polinka” gondola cable car over the Odra river in Wrocław. Research covered the basic and control measurements. The results of observations of suspension ropes’ deflection of the cable car in kinematical state were compared for various degrees of loading. During the motion of the gondola, the shape of the pull and supporting rope is subject to constant shifts. TS measurements are restricted solely to registering interim positioning of the points of pull lines (measurement of static objects). Laser scanner measurements may reveal changes in the location of many points (i.e. drive lines, catenaries or carriages) within a unit of time. The tests were designed to show whether it is possible to capture the shifts in geometry of the moving object (mainly by means of the TLS methods - in the course of constant vibrating of lines and during the movement of gondolas). The analyses indicated that it is possible to capture the changes of geometry by means of the TLS method, however, upon strictly specified measurement conditions.


2020 ◽  
Vol 49 (2-3) ◽  
Author(s):  
Aliki Konsolaki ◽  
Emmanuel Vassilakis ◽  
Leonidas Gouliotis ◽  
Georgios Kontostavlos ◽  
Vassilis Giannopoulos

Remote sensing techniques and laser scanning technology have given us the opportunity to study indoor environments, such as caves, with their complex and unique morphology. In the presented case study, we used a handheld laser scanner for acquiring points with projected coordinate information (X, Y, Z) covering the entire show cave of Koutouki; including its hidden passages and dark corners. The point cloud covers the floor, the walls, and the roof of the cave, as well as the stalactites, stalagmites and the connected columns that constitute the decoration of the cave. The absolute and exact placement of the point cloud within a geographic reference frame gives us the opportunity for three-dimensional measurements and detailed visualization of the subsurface structures. Using open - source software, we managed to make a quantification analysis of the terrain and generated morphological and geometric features of the speleothems. We identified 55 columns by using digital terrain analysis and processed them statistically in order to correlate them to the frame of the cave development. The parameters that derived are the contours, each column height, the speleothem geometry and volume, as well as the volume of the open space cavity. We argue that by the demonstrated methodology, it is possible to identify with high accuracy and detail: the geomorphological features of a cave, an estimate of the speleogenesis, and the ability to monitor the evolution of a karstic system.Key words: cave, laser scanner, 3D representation, speleothems, SLAM.  


Author(s):  
Saadet Armağan Güleç Korumaz ◽  
◽  
Büşra Kubiloğlu ◽  

3D Laser Scanning technologies have proven to be significant way to architectural documentation studies. Due to these facilities, the use of technology in architectural documentation have become widespread day by day. Thanks to these technologies it is possible to get high accuracy and intense data in a short time compared to conventional methods. Therefore, this technology has increased the content and quality of conservation practices. The technology is mainly aimed at obtaining a three-dimensional model or two-dimensional layouts from a dense and detailed point cloud. Terrestrial Laser Scanning (TLS) does not only support simple CAD-based conservation projects, but also allows obtaining high-resolution plane pictures, art tours, three-dimensional mesh models, and two-dimensional maps. Besides these possibilities, high accuracy data on the morphological properties of the documented object can be obtained as a result of the analyses including point cloud. On the other hand, the technology gives possibility data to be shared in different environments and filtered data can be used online. Thus, different disciplines are able to easily access information. These features of technology add a different dimension to the studies in the field of cultural heritage and contribute to the digitalization of the heritage. In the scope of this study, evaluations are made regarding the innovations and usage possibilities brought by TLS technology to architectural documentation field based on the cultural heritage samples. In addition, within the scope of the study, trials were made on field studies for parameters that will affect data quality, accuracy and speed. In addition, within the scope of the study, some tests were made on field studies for parameters affecting data quality, accuracy and speed. With the obtained results, evaluations have been made to increase the usage potential of the technology today.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jianghong Zhao ◽  
Yan Dong ◽  
Siyu Ma ◽  
Huajun Liu ◽  
Shuangfeng Wei ◽  
...  

Segmentation is an important step in point cloud data feature extraction and three-dimensional modelling. Currently, it is also a challenging problem in point cloud processing. There are some disadvantages of the DBSCAN method, such as requiring the manual definition of parameters and low efficiency when it is used for large amounts of calculation. This paper proposes the AQ-DBSCAN algorithm, which is a density clustering segmentation method combined with Gaussian mapping. The algorithm improves upon the DBSCAN algorithm by solving the problem of automatic estimation of the parameter neighborhood radius. The improved algorithm can carry out density clustering processing quickly by reducing the amount of computation required.


Author(s):  
Gülhan Benli

Since the 2000s, terrestrial laser scanning, as one of the methods used to document historical edifices in protected areas, has taken on greater importance because it mitigates the difficulties associated with working on large areas and saves time while also making it possible to better understand all the particularities of the area. Through this technology, comprehensive point data (point clouds) about the surface of an object can be generated in a highly accurate three-dimensional manner. Furthermore, with the proper software this three-dimensional point cloud data can be transformed into three-dimensional rendering/mapping/modeling and quantitative orthophotographs. In this chapter, the study will present the results of terrestrial laser scanning and surveying which was used to obtain three-dimensional point clouds through three-dimensional survey measurements and scans of silhouettes of streets in Fatih in Historic Peninsula in Istanbul, which were then transposed into survey images and drawings. The study will also cite examples of the facade mapping using terrestrial laser scanning data in Istanbul Historic Peninsula Project.


2014 ◽  
Vol 657 ◽  
pp. 795-799 ◽  
Author(s):  
Anastasios Chatzikonstantinou ◽  
Dimitrios Tzetzis ◽  
Panagiotis Kyratsis ◽  
Nikolaos Bilalis

The current work demonstrates a feasibility study on the generation of a copy, having a highly complex geometry, of a Greek paleontological find utilising reverse engineering and low-cost rapid prototyping techniques. A part of the jaw bone of a cave bear (Ursus spelaeus) that lived during the Pleistocene and became extinct about 10,000 years ago was digitized using a three-dimensional laser scanner. The resulting point-cloud of the scans was treated with a series of advanced software for the creation of surfaces and ultimately for a digital model. The generated model was three-dimensionally built by the aid of a Fused Deposition Modeling (FDM) apparatus. An analytical methodology is presented revealing the step by step approach from the scanning to the prototyping. It is believed that a variety of interested parties could benefit from such an analytical approach, including, production engineers, three-dimensional CAD users and designers, paleontologists and museum curators.


Sign in / Sign up

Export Citation Format

Share Document