scholarly journals Exome Sequencing in Paediatric Patients with Movement Disorders with Treatment Possibilities

Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background: Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results: We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential targeted treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusion: A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management using targeted therapies. The study highlights the potential of implementing precision medicine in the patients.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Anna Ka-Yee Kwong ◽  
Mandy Ho-Yin Tsang ◽  
Jasmine Lee-Fong Fung ◽  
Christopher Chun-Yu Mak ◽  
Kate Lok-San Chan ◽  
...  

Abstract Background Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. Results We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. Conclusions A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


2020 ◽  
Author(s):  
Mandy Ho-Yin Tsang ◽  
Anna Ka-Yee Kwong ◽  
Kate Lok-San Chan ◽  
Jasmine Lee-Fong Fung ◽  
Mullin Ho-Chung Yu ◽  
...  

Abstract BackgroundMitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs.MethodsWe recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines.ResultsSixty-six patients with pre-biopsy MDC scores of 3–8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n=3, two were siblings), ALDH5A1 , ARX , FA2H , KCNT1 , LDHD , NEFL , NKX2-2 , TBCK , and WAC.ConclusionsWe confirmed that the COQ4 :c.370G>A, p.(Gly124Ser) variant was a recurrent founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


2020 ◽  
Author(s):  
Mandy Ho-Yin Tsang ◽  
Anna Ka-Yee Kwong ◽  
Kate Lok-San Chan ◽  
Jasmine Lee-Fong Fung ◽  
Mullin Ho-Chung Yu ◽  
...  

Abstract Background Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs.Methods We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines.Results Sixty-six patients with pre-biopsy MDC scores of 3–8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n=3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC.Conclusions We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant was a recurrent founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


2018 ◽  
Vol 4 (5) ◽  
pp. e265 ◽  
Author(s):  
Dawn Cordeiro ◽  
Garrett Bullivant ◽  
Komudi Siriwardena ◽  
Andrea Evans ◽  
Jeff Kobayashi ◽  
...  

ObjectiveTo identify underlying genetic causes in patients with pediatric movement disorders by genetic investigations.MethodsAll patients with a movement disorder seen in a single Pediatric Genetic Movement Disorder Clinic were included in this retrospective cohort study. We reviewed electronic patient charts for clinical, neuroimaging, biochemical, and molecular genetic features. DNA samples were used for targeted direct sequencing, targeted next-generation sequencing, or whole exome sequencing.ResultsThere were 51 patients in the Pediatric Genetic Movement Disorder Clinic. Twenty-five patients had dystonia, 27 patients had ataxia, 7 patients had chorea-athetosis, 8 patients had tremor, and 7 patients had hyperkinetic movements. A genetic diagnosis was confirmed in 26 patients, including in 20 patients with ataxia and 6 patients with dystonia. Targeted next-generation sequencing panels confirmed a genetic diagnosis in 9 patients, and whole exome sequencing identified a genetic diagnosis in 14 patients.ConclusionsWe report a genetic diagnosis in 26 (51%) patients with pediatric movement disorders seen in a single Pediatric Genetic Movement Disorder Clinic. A genetic diagnosis provided either disease-specific treatment or effected management in 10 patients with a genetic diagnosis, highlighting the importance of early and specific diagnosis.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Mandy H.Y. Tsang ◽  
Anna K.Y. Kwong ◽  
Kate L.S. Chan ◽  
Jasmine L.F. Fung ◽  
Mullin H.C. Yu ◽  
...  

Abstract Background Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs. Methods We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤ 1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines. Results Sixty-six patients with pre-biopsy MDC scores of 3–8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n = 3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC. Conclusions We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant, was a founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Tomas Robyns ◽  
Johan Van Cleemput ◽  
Rik Willems ◽  
Shalini Jhangiani ◽  
Donna Muzny ◽  
...  

Background and hypothesis: Familial dilated cardiomyopathy (DCM) is genetically heterogeneous and is associated with mutations in at least 30 different genes. None of these genes have an expected diagnostic yield of more than 10% complicating genetic diagnosis. Whole exome sequencing (WES) is a powerful alternative for the identification of the causal gene, however variant interpretation remains challenging. We performed WES in a large family with autosomal dominant DCM complicated by end stage heart failure and ventricular arrhythmias. The index of this family was evaluated previously by means of targeted gene panel analysis including 28 genes, but no causal mutation was found. Methods and results: WES was applied on 2 affected cousins. First, shared heterozygous variants (single nucleotide variants, small insertions and deletions) located inside the exon or at the exon/intron boundary were selected. Synonymous variants were excluded, except if they were located at the exon/intron boundaries. Variants with a minor allele frequency of >0.1% in publically available exome databases (1000 Genomes and ESP) were excluded. Furthermore, variants that were present in an in-house exome cohort performed for other disease entities were also excluded since these probably represent local SNV’s. The remaining 19 variants were evaluated using a comprehensive scoring system that includes different in-silico analysis tools, orthologous and paralogous conservation and population frequencies. Subsequently Sanger sequencing was performed for 10 variants that were classified as likely pathogenic (N=1) or variants of unknown significance (N=9) according to the scoring system in order to confirm the presence of the variant and to evaluate co-segregation. Only one variant in exon 9 of the RBM20 gene (c.2714T>A, p.Met950Lys, NM_001334363) showed full co-segregation in the 7 affected family members resulting in a maximum 2-point LOD score of 2.1 and suggesting this as the pathogenic mutation responsible for the phenotype. Recently mutations in RBM20 have been linked to dilated cardiomyopathy caused by defective splicing of the giant sarcomeric protein titin. Conclusions: We report the identification of a novel mutation in RBM20 by WES in a large pedigree with DCM.


Author(s):  
L Gauquelin ◽  
T Hartley ◽  
M Tarnopolsky ◽  
DA Dyment ◽  
B Brais ◽  
...  

Background: Cerebellar atrophy is characterized by loss of cerebellar tissue, with evidence on brain imaging of enlarged interfolial spaces compared to the foliae. Genetic ataxias associated with cerebellar atrophy are a heterogeneous group of disorders. We investigated the prevalence in Canada and the diagnostic yield of whole exome sequencing (WES) for this group of conditions. Methods: Between 2011 and 2017, WES was performed in 91 participants with cerebellar atrophy as part of one of two national research programs, Finding of Rare Genetic Disease Genes (FORGE) or Enhanced Care for Rare Genetic Diseases in Canada (Care4Rare). Results: A genetic diagnosis was established in 58% of cases (53/91). Pathogenic variants were found in 24 known genes, providing a diagnosis for 46/53 participants (87%), and in four novel genes, accounting for 7/53 cases (13%). 38/91 cases (42%) remained unsolved. The most common diagnoses were channelopathies in 12/53 patients (23%) and mitochondrial disorders in 9/53 (17%). Inheritance was autosomal recessive in the majority of cases. Additional clinical findings provided useful clues to some of the diagnoses. Conclusions: This is the first report on the prevalence of genetic ataxias associated with cerebellar atrophy in Canada, and the utility of WES for this group of conditions.


2020 ◽  
Vol 9 (7) ◽  
pp. 2220
Author(s):  
Robert Śmigiel ◽  
Mateusz Biela ◽  
Krzysztof Szmyd ◽  
Michal Błoch ◽  
Elżbieta Szmida ◽  
...  

Genetic disorders are the leading cause of infant morbidity and mortality. Due to the large number of genetic diseases, molecular and phenotype heterogeneity and often severe course, these diseases remain undiagnosed. In infants with a suspected acute monogenic disease, rapid whole-exome sequencing (R-WES) can be successfully performed. R-WES (singletons) was performed in 18 unrelated infants with a severe and/or progressing disease with the suspicion of genetic origin hospitalized in an Intensive Care Unit (ICU). Blood samples were also collected from the parents. The results from the R-WES were available after 5–14 days. A conclusive genetic diagnosis was obtained in 13 children, corresponding to an overall diagnostic yield of 72.2%. For nine patients, R-WES was used as a first-tier test. Eight patients were diagnosed with inborn errors of metabolism, mainly mitochondrial diseases. In two patients, the disease was possibly caused by variants in genes which so far have not been associated with human disease (NARS1 and DCAF5). R-WES proved to be an effective diagnostic tool for critically ill infants in ICUs suspected of having a genetic disorder. It also should be considered as a first-tier test after precise clinical description. The quickly obtained diagnosis impacts patient’s medical management, and families can receive genetic counseling.


2021 ◽  
Author(s):  
Renu Kumari ◽  
Bharath Ram Uppilli ◽  
Sunil Shakya ◽  
Ajay Garg ◽  
Aditi Joshi ◽  
...  

Abstract PurposeDisease deconvolution in heterogeneous cerebellar ataxias (CAs) needs a focussed approach to overcome the diagnostic challenges. A diverse clinical presentation with over 100 reported genetic loci, in addition to the various challenges associated with genotype-phenotype correlation complicate the genetic diagnosis in 40-60% of the CA cases that remain uncharacterized. We present here an integrated whole exome sequencing combined with a functional validation approach to delineate the genetic etiology in Indian CA patients.MethodA total of 50 familial and sporadic progressive CA families (negative for CNG expansion) including 101 subjects were recruited for this study. Index patients from 50 families were subjected to singleton whole exome sequencing (S-WES). Family-based WES (F-WES) was carried out for seven S-WES selected families. Protein simulation and docking studies were performed for seven genetic variants identified through WES. A Cell line-based model was used to assess disease signatures for variants in KCNC3 and a new candidate gene, SPTB.ResultsClinically relevant variants identified in 70% (35/50) of the selected families. We achieved a 50% (25/50) definitive diagnostic yield and 14% (7/50) probable diagnostic yield while 6% (3/50) of the families showed variants of uncertain significance. We prioritized compound heterozygous variants in a candidate gene, SPTB for cerebellar ataxia with hereditary spherocytosis. Lymphoblastoid cell line derived from a patient with a KCNC3 variant showed altered disease signatures with induced ROS and elevated unfolded protein response markers at the basal level.ConclusionOur results highlight an extensive experimental design for the genetic diagnosis of CA. Through targeted analysis of ataxia phenotype-derived gene panel in S-WES, new gene identification through F-WES, and revaluation of unsolved families’ WES data, we identified novel, reported and other clinically relevant variants in CA patients. Bioinformatic protein modeling along with the cellular insights into the pathogenicity of novel variants enabled delineation of genetic diagnostics and enhanced the mechanistic understanding of CAs.


Sign in / Sign up

Export Citation Format

Share Document