scholarly journals Dynamic and Probabilistic Seismic Performance Assessment of Precast Prestressed Rcfs Incorporating Slab Influence Through Three-Dimensional Spatial Model

Author(s):  
Xu-Yang Cao ◽  
Cheng-Zhuo Xiong ◽  
De-Cheng Feng ◽  
Gang Wu

Abstract The dynamic and probabilistic seismic performances of precast prestressed RCFs are assessed in this paper, and the slab influence in the overall structural behavior is considered during the process. The threedimensional spatial model is established to provide the numerical basis, and the slab is modelled through L-/T-section beam-slab fiber-sections considering the effective width and centroid positions. The adopted model is verified with the experimental data, and the slab influence in hysteresis curves is investigated by parametric study. Then, two groups of precast prestressed RCFs are well designed to evaluate the slab influence in dynamic responses through seismic excitations, and the modal analysis, roof displacement analysis, maximum and residual drift ratio analysis are conducted for discussion. Moreover, the incremental dynamic analysis and fragility analysis are also conducted to investigate the probabilistic performance of precast prestressed RCFs with or without slabs. In general, different demand parameters may result in the variability of analyzing results, and ignoring the slab influence may underestimate the structural capacity under the frequent earthquakes (i.e., elastic stage) and overestimate the structural capacity under the rare earthquakes (i.e., plastic stage). In a sense, the research proves the significance of slabs in the seismic performance of dry-connected precast prestressed RCFs, and meanwhile provides the reference for the further explorations of slab factors in precast concrete structures.

2019 ◽  
Vol 476 (20) ◽  
pp. 2981-3018 ◽  
Author(s):  
Petar H. Lambrev ◽  
Parveen Akhtar

Abstract The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


2021 ◽  
Vol 1 (1) ◽  
pp. 39-47
Author(s):  
Christine Price

This paper problematises the dominance of global north perspectives in landscape architectural education, in South Africa where there are urgent calls to decolonise education and make visible indigenous and vernacular meaning-making practices. In grappling with these concerns, this research finds resonance with a multimodal social semiotic approach that acknowledges the interest, agency and resourcefulness of students as meaning-makers in both accessing and challenging dominant educational discourses. This research involves a case study of a design project in a first-year landscape architectural studio. The project requires students to choose a narrative and to represent it as a spatial model: a scaled, 3D maquette of a spatial experience that could be installed in a public park. This practitioner reflection closely analyses the spatial model of one student, Malibongwe, focusing on his interest in meaning-making; the innovative meaning-making practices and diverse resources he draws on; and his expression of spatial signifiers of the Black experiences portrayed in his narrative. This reflection shows how Malibongwe’s narrative is not only reproduced in the spatial model, it is remade: the transformation of resources into three-dimensional spatial form results in new understandings and the production of new meanings.


Sign in / Sign up

Export Citation Format

Share Document