scholarly journals Bexarotene-induced Cell Death in Ovarian Cancer Cells Through Caspase-4–mediated pyroptosis

Author(s):  
Tatsuya Kobayashi ◽  
Akira Mitsuhashi ◽  
Piao Hongying ◽  
Masashi Shioya ◽  
Kyoko Nishikimi ◽  
...  

Abstract Purpose: Bexarotene is selectively activates retinoid X recepto, whichr is a commonly used anticancer agent for cutaneous T-cell lymphoma. In this study, we aimed to investigate the anticancer effect of bexarotene and its underlying mechanism in ovarian cancer in vitro.Methods: The ES2 and NIH:OVACAR3 ovarian cancer cell lines were treated with 0, 5, 10, or 20 µM bexarotene. After 24 hours, cell number measurement and lactate dehydrogenase (LDH) cytotoxicity assay were performed. The effect of bexarotene on CDKN1A expression, pyroptosis, and apoptosis were evaluated.Results: Bexarotene reduced cell proliferation in all concentrations in both cells. At concentrations above 10 µM, it increased extracellular LDH activity with cell rupture. In both cells, 10 µM bexarotene treatment increased the CDKN1A mRNA levels and reduced cell cycle related protein expression. In ES2 cells, caspase-4 and GSDME were activated, whereas caspase-3 was not, indicating that bexarotene-induced cell death might be pyroptosis. Conclusion: A clinical setting dose of bexarotene induced cell cycle arrest and cell death through caspase-4–mediated pyroptosis in ovarian cancer cell lines. Thus, bexarotene may serve as a novel therapeutic agent for ovarian cancer.

2017 ◽  
Vol 37 (4) ◽  
Author(s):  
Qin Zhang ◽  
Shuxiang Zhang

Ovarian cancer is one of the leading causes of death among gynecological malignancies. Increasing evidence indicate that dysregulation of microRNAs (miRNAs) plays an important role in tumor radioresistance. The aim of the present study is to investigate whether microRNA-214 (miR-214) was involved in radioresistance of human ovarian cancer. Here, we showed that miR-214 was significantly up-regulated in ovarian cancer tissues and radioresistance ovarian cancer cell lines. Transfection of miR-214 agomir in radiosensitive ovarian cancer cell lines promoted them for resistance to ionizing radiation, whereas transfection of miR-214 antagomir in radioresistance ovarian cancer cell lines sensitized them to ionizing radiation again. Furthermore, we found miR-214 effectively promoted tumor radioresistance in xenograft animal experiment. Western blotting and quantitative real-time PCR demonstrated that miR-214 negatively regulated PTEN in radioresistance ovarian cancer cell lines and ovarian cancer tissues. Taken together, our data conclude that miR-214 contributes to radioresistance of ovarian cancer by directly targeting PTEN.


2020 ◽  
Vol 168 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hui Zhao ◽  
Aixia Wang ◽  
Zhiwei Zhang

Abstract Ovarian cancer has ranked as one of the leading causes of female morbidity and mortality around the world, which affects ∼239,000 patients and causes 152,000 deaths every year. Chemotherapeutic resistance of ovarian cancer remains a devastating actuality in clinic. The aberrant upregulation of long non-coding RNA succinate dehydrogenase complex flavoprotein subunit A pseudogene 1 (lncRNA SDHAP1) in the Paclitaxel (PTX)-resistant ovarian cancer cell lines has been reported. However, studies focussed on SDHAP1 in its regulatory function of chemotherapeutic resistance in ovarian cancer are limited, and the detailed mechanisms remain unclear. In this study, we demonstrated that SDHAP1 was upregulated in PTX-resistant SKOV3 and Hey-8 ovarian cancer cell lines while the level of miR-4465 was downregulated. Knocking-down SDHAP1 induced re-acquirement of chemo-sensitivity to PTX in ovarian cancer cells in vitro. Mechanically, SDHAP1 upregulated the expression of EIF4G2 by sponging miR-4465 and thus facilitated the PTX-induced apoptosis in ovarian cancer cells. The regulation network involving SDHAP1, miR-4465 and EIF4G2 could be a potential therapy target for the PTX-resistant ovarian cancer.


2010 ◽  
Vol 4 (S2) ◽  
Author(s):  
Fernanda Silva ◽  
Jacinta Serpa ◽  
Germana Domingues ◽  
Gabriela Silva ◽  
António Almeida ◽  
...  

2016 ◽  
Vol 64 (4) ◽  
pp. 950.1-950 ◽  
Author(s):  
SH Afroze ◽  
DC Zawieja ◽  
R Tobin ◽  
C Peddaboina ◽  
MK Newell-Rogers ◽  
...  

ObjectiveCinobufotalin (CINO), a cardiotonic steroid (CTS) or bufadienolide, is extracted from the skin secretions of the traditional Chinese medicine giant toads (Chan su). CINO has been used as a cardiotonic, diuretic and a hemostatic agent. Previously we have shown that CINO inhibits the cytotrophoblast cell function. Recently other study has shown that CINO inhibits A549, a lung cancer cell function. In this study, we assessed the effect of CINO on three different ovarian cancer cell lines; SK-OV-3, CRL-1978 and CRL-11731 to confirm whether the effect of CINO is cell specific.Study DesignWe evaluated the effect of CINO on three ovarian cancer cells SK-OV-3, CRL-1978, and CRL-11731 function in vitro. Each Cell lines were treated with different concentrations of CINO (0.1, 1, 5 and 10 µM). For each cell line cell proliferation, migration and invasion were measured by using a CellTiter Assay (Promega), Cytoselect Assay (Cell Biolabs) and by using a FluoroBlock Assay (BD) respectively. Proliferating Cell Nuclear Antigen (PCNA) was also evaluated in cell lysates of CINO treated these 3 ovarian cancer cells by western blot analysis. Cell Cycle arrest and Cell viability were determined by fluorescence-activated cell sorting (FACS) analysis. We also performed Annexin V staining on CINO treated these 3 ovarian cancer cell lines by immunofluorescence to evaluate the pro-apoptotic protein expression. In addition mitochondrial membrane potential has also been measured for all these 3 ovarian cell lines after CINO treatment using MMP kit, by FACS analysis.ResultsConcentration of CINO at 0.5 µM inhibit SK-OV-3, CRL-1978, and CRL-11731 ovarian cancer cells proliferation, migration and invasion without cell death and loss of cell viability but cell viability differs for each cell line. Each cell lines differ in response to CINO doses for PCNA expression as well as Annexin V pro-apoptotic protein expression. CINO decreases mitochondrial membrane potential for SK-OV-3 but for CRL-1978 and CRL-11731 increases in response to CINO treatment.ConclusionCINO is cell specific, as each cancer cell line responds differently. These data demonstrate that the mode of action of CINO is different on these 3 types of ovarian cancer cells.


2020 ◽  
Author(s):  
Mikella Robinson ◽  
Samuel F Gilbert ◽  
Jennifer A Waters ◽  
Omar Lujano-Olazaba ◽  
Jacqueline Lara ◽  
...  

AbstractIdentification of tumor initiating cells (TICs) has traditionally relied on expression of surface markers such as CD133, CD44, and CD117 and enzymes such as aldehyde dehydrogenase (ALDH). Unfortunately, these markers are often cell type specific and not reproducible across patient samples. A more reliable indication of TICs may include elevated expression of stem cell transcription factors such as SOX2, OCT4, and NANOG that function to support long-term self-renewal, multipotency, and quiescence. RNA-sequencing studies presented here highlight a potential role for SOX2 in cell cycle progression in cells grown as 3-D spheroids, which are more tumorigenic and contain higher numbers of TICs than their 2-D monolayer cultured counterparts. SOX2, OCT4, and NANOG have not been comprehensively evaluated in ovarian cancer cell lines, although their expression is often associated with tumorigenic cells. We hypothesize that SOX2, OCT4, and NANOG will be enriched in ovarian TICs and will correlate with chemotherapy resistance, tumor initiation, and expression of traditional TIC markers. To investigate this hypothesis, we evaluated SOX2, OCT4, and NANOG in a panel of eight ovarian cancer cell lines grown as a monolayer in standard 2-D culture or as spheroids in TIC-enriching 3-D culture. Our data show that the high-grade serous ovarian cancer (HGSOC) lines CAOV3, CAOV4, OVCAR4, and OVCAR8 had longer doubling-times, greater resistance to chemotherapies, and significantly increased expression of SOX2, OCT4, and NANOG in TIC-enriching 3-D culture conditions. We also found that in vitro chemotherapy treatment enriches for cells with significantly higher expression of SOX2. We further show that the traditional TIC marker, CD117 identifies ovarian cancer cells with enhanced SOX2, OCT4, and NANOG expression. Tumor-initiation studies and analysis of The Cancer Genome Atlas (TCGA) suggest a stronger role for SOX2 in ovarian cancer relapse compared with OCT4 or NANOG. Overall, our study clarifies the expression of SOX2, OCT4, and NANOG in TICs from a variety of ovarian cancer cell lines. Our findings suggest that SOX2 expression is a stronger indicator of ovarian TICs with enhanced tumor-initiation capacity and potential for relapse. Improved identification of ovarian TICs will advance our understanding of TIC biology and facilitate the design of better therapies to eliminate TICs and overcome chemotherapy resistance and disease relapse.


Author(s):  
Jillian Hurst ◽  
Nisha Mendpara ◽  
Shelley Hooks

AbstractRegulator of G-protein signalling (RGS)2 proteins critically regulate signalling cascades initiated by G-protein coupled receptors (GPCRs) by accelerating the deactivation of heterotrimeric G-proteins. Lysophosphatidic acid (LPA) is the predominant growth factor that drives the progression of ovarian cancer by activating specific GPCRs and G-proteins expressed in ovarian cancer cells. We have recently reported that RGS proteins endogenously expressed in SKOV-3 ovarian cancer cells dramatically attenuate LPA stimulated cell signalling. The goal of this study was twofold: first, to identify candidate RGS proteins expressed in SKOV-3 cells that may account for the reported negative regulation of G-protein signalling, and second, to determine if these RGS protein transcripts are differentially expressed among commonly utilized ovarian cancer cell lines and non-cancerous ovarian cell lines. Reverse transcriptase-PCR was performed to determine transcript expression of 22 major RGS subtypes in RNA isolated from SKOV-3, OVCAR-3 and Caov-3 ovarian cancer cell lines and non-cancerous immortalized ovarian surface epithelial (IOSE) cells. Fifteen RGS transcripts were detected in SKOV-3 cell lines. To compare the relative expression levels in these cell lines, quantitative real time RT-PCR was performed on select transcripts. RGS19/GAIP was expressed at similar levels in all four cell lines, while RGS2 transcript was detected at levels slightly lower in ovarian cancer cells as compared to IOSE cells. RGS4 and RGS6 transcripts were expressed at dramatically different levels in ovarian cancer cell lines as compared to IOSE cells. RGS4 transcript was detected in IOSE at levels several thousand fold higher than its expression level in ovarian cancer cells lines, while RGS6 transcript was expressed fivefold higher in SKOV-3 cells as compared to IOSE cells, and over a thousand fold higher in OVCAR-3 and Caov-3 cells as compared to IOSE cells. Functional studies of RGS 2, 6, and 19/GAIP were performed by measuring their effects on LPA stimulated production of inositol phosphates. In COS-7 cells expressing individual exogenous LPA receptors, RGS2 and RSG19/GAIP attenuated signalling initiated by LPA1, LPA2, or LPA3, while RGS6 only inhibited signalling initiated by LPA2 receptors. In SKOV-3 ovarian cancer cells, RGS2 but not RGS6 or RGS19/GAIP, inhibited LPA stimulated inositol phosphate production. In contrast, in CAOV-3 cells RGS19/GAIP strongly attenuated LPA signalling. Thus, multiple RGS proteins are expressed at significantly different levels in cells derived from cancerous and normal ovarian cells and at least two candidate RGS transcripts have been identified to account for the reported regulation of LPA signalling pathways in ovarian cancer cells.


Sign in / Sign up

Export Citation Format

Share Document