Design and Simulation of Electrochemical Equivalent Circuit for Extended-gate FET pH Sensor Based on Experimental Value Using LTSPICE XVII

Author(s):  
Shaiful Bakhtiar Hashim ◽  
Zurita Zulkifli ◽  
Sukreen Hana Herman

Abstract A SPICE model for extended-gate field-effect transistor (EGFET) based pH sensor was developed using standard discrete components. Capacitors and resistors were used to represent the sensing and reference electrodes in the EGFET sensor system and the values of the discrete component were varied to see the output of the transistor. These variations were done to emulate the EGFET sensor output in different pH values. It was found that the experimental transfer and output characteristics of the EGFET were very similar to those from the SPICE simulation. Other than that, the changes of value components in the equivalent circuit did not affect the transfer and output characteristics graph, but the capacitor value produced significant output variation in the simulation. This can be related to the modification on the equivalent circuit was done with additional voltage, VSB (source to bulk) to produce the different VT values at different pH.

2006 ◽  
Vol 913 ◽  
Author(s):  
Pei W. Ding ◽  
Kristel Fobelets ◽  
Jesus E Velazquez-Perez

AbstractA novel field effect transistor (FET) that uses 3-dimensional (3-D) embedded gate fingers – the Screen-Grid Field Effect Transistor (SGFET) – is proposed. The gating action of the SGFET is based on the design of multiple gating cylinders into the channel region, perpendicular to the current flow. Such configuration allows a full 3-D gate control of the current which improves the device characteristics by increasing the gate to channel coupling. Initial investigations of the SGFET using 3-D TCAD TaurusTM simulation software are presented in this paper. The results indicate that the proposed SGFET offers the possibility of downscaling without degrading the output characteristics. A comparison between the SGFET and both bulk and SOI MOSFETs shows the superior characteristics of the SGFET for low power operation.


2021 ◽  
pp. 100102
Author(s):  
Prashant Sharma ◽  
Rini Singh ◽  
Rishi Sharma ◽  
Ravindra Mukhiya ◽  
Kamlendra Awasthi ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Xin Li ◽  
Junjie Shi ◽  
Junchao Pang ◽  
Weihua Liu ◽  
Hongzhong Liu ◽  
...  

Graphene channel liquid container field effect transistor pH sensor with interdigital microtrench for liquid ion testing is presented. Growth morphology and pH sensing property of continuous few-layer graphene (FLG) and quasi-continuous monolayer graphene (MG) channels are compared. The experiment results show that the source-to-drain current of the graphene channel FET has a significant and fast response after adsorption of the measured molecule and ion at the room temperature; at the same time, the FLG response time is less than 4 s. The resolution of MG (0.01) on pH value is one order of magnitude higher than that of FLG (0.1). The reason is that with fewer defects, the MG is more likely to adsorb measured molecule and ion, and the molecules and ions can make the transport property change. The output sensitivities of MG are from 34.5% to 57.4% when the pH value is between 7 and 8, while sensitivity of FLG is 4.75% when thepH=7. The sensor fabrication combines traditional silicon technique and flexible electronic technology and provides an easy way to develop graphene-based electrolyte gas sensor or even biological sensors.


2018 ◽  
Vol 924 ◽  
pp. 949-952 ◽  
Author(s):  
David J. Spry ◽  
Philip G. Neudeck ◽  
Dorothy Lukco ◽  
Liang Yu Chen ◽  
Michael J. Krasowski ◽  
...  

This report describes more than 5000 hours of successful 500 °C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 °C. After 100 hours of 500 °C burn-in, the circuits (except for 2 failures) exhibit less than 10% change in output characteristics for the remainder of 500 °C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460 °C in comparison to what is observed for Earth-atmosphere oven testing at 500 °C.


2015 ◽  
Vol 13 (1) ◽  
pp. 26-31 ◽  
Author(s):  
R. Mukhiya ◽  
R. Sharma ◽  
V. K. Khanna ◽  
A. Adami ◽  
L. Lorenzelli ◽  
...  

2020 ◽  
Vol 6 (12) ◽  
pp. 125423 ◽  
Author(s):  
N M Abd-Alghafour ◽  
Ghassan Adnan Naeem ◽  
Naser M Ahmed ◽  
Naveed Afzal ◽  
Rasim Farraj Muslim

2006 ◽  
Vol 45 (4B) ◽  
pp. 3609-3613 ◽  
Author(s):  
Haitao Ye ◽  
Makoto Kasu ◽  
Kenji Ueda ◽  
Yoshiharu Yamauchi ◽  
Narihiko Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document