scholarly journals Pharmacokinetics and Bioequivalence Study of Two Ciprofloxacin Hydrochloride Tablets in Chinese Healthy Volunteers Under Fasting and Fed Conditions: A Randomized, Open-Label, Two-Formulation, Two-Sequence, Two-Period, Single-Dose Crossover Study.

Author(s):  
Fei Qin ◽  
Gan-Mi Wang ◽  
Jin-Ying Huang ◽  
Jia-Rong Wu ◽  
Wen-Jie Song ◽  
...  

Abstract BackgroundCiprofloxacin is a broad-spectrum fluoroquinolone antibiotic which is active against a wide range of Gram-positive and Gram-negative bacteria. The study mainly aimed to determine the bioequivalence of two branded ciprofloxacin hydrochloride tablets (250 mg) under the fasting and fed conditions.MethodsThe study was carried out in 48 healthy Chinese subjects under fasting and fed conditions with a randomized, open-label, two-formulation, two-sequence, two-period, single-dose crossover design. In each period of the study, the subjects were assigned to receive a single oral dose of 250 mg of ciprofloxacin hydrochloride. Blood samples were collected from an hour before dosing to 36 h after administration with 16 time points in total. The bioequivalence analysis was performed after ln-transformation of the ciprofloxacin pharmacokinetic parameters including maximum concentration (Cmax), area under the plasma concentration–time curve from time 0 to time t (AUC0-t), area under the plasma concentration-time curve from time 0 to infinity (AUC0-∞). Two formulations are considered bioequivalent if the 90% confidence intervals (CIs) for the test/reference geometric mean ratios (GMRs) for the ln-transformed pharmacokinetic parameters fall within the standard acceptance range of 80% – 125%. ResultsIn total of 48 subjects were enrolled in the fasting and fed studies, and one of the subjects was excluded before the administration. In the fasting study, the 90% CIs for the test/reference GMRs of the ln-transformed data for Cmax, AUC0–t, and AUC0–∞ were 85.41% to 100.97%, 95.40% to 100.27%, and 95.48% to 100.30%, respectively. For the fed study, the 90% CIs for the test/reference GMRs of the ln-transformed data for Cmax, AUC0–t, and AUC0–∞ were 90.15% to 113.75%, 99.10% to 103.77% and 99.11% to 103.80%, respectively. A total of 8 of 47 subjects experienced AEs in the fasting and fed studies.ConclusionsIn the study, the generic (test) product of ciprofloxacin hydrochloride 250 mg was bioequivalent to the innovator (reference) product after a single oral dose administration under the fasting and fed conditions. Both two brands of ciprofloxacin tablets were safe and well tolerated.Trial registrationThe clinical trial was registered at Center for the Drug Evaluation of the National Medical Products Administration (registration number: CTR20171152; date of registration:September 25, 2017; http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml).

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Wirin Limopasmanee ◽  
Sunee Chansakaow ◽  
Noppamas Rojanasthien ◽  
Maleeya Manorot ◽  
Chaichan Sangdee ◽  
...  

A combination of soy isoflavones andLiu Wei Di Huang Wan(LWDHW) is potentially effective for postmenopausal women with intolerable vasomotor episodes who are not suitable candidates for hormonal therapy. The objective of this open-label, three-phase, crossover study was to determine the influence of both single and multiple oral doses of LWDHW on isoflavone pharmacokinetics in healthy postmenopausal women. Eleven subjects were assigned to receive the following regimens in a fixed sequence with washout periods of at least one week: Phase A, a single oral dose of soy milk; Phase B, a single oral dose of soy milk coadministered with LWDHW; and Phase C, multiple oral doses of LWDHW for 14 days followed by a single oral dose of soy milk. Blood samples were collected and mixed withβ-glucuronidase/sulfatase to hydrolyze isoflavone conjugates to their respective aglycones (i.e., daidzein and genistein) and were determined using high performance liquid chromatography. The pharmacokinetic parameters analyzed were maximal plasma concentrationCmax, time to reach peak concentrationTmax, area under the plasma concentration-time curve (AUC), and half-life (t1/2). The results found no statistically significant differences in pharmacokinetic parameters of daidzein and genistein among the three regimens.


2002 ◽  
Vol 2 ◽  
pp. 1369-1378 ◽  
Author(s):  
Tom B. Vree ◽  
Eric Dammers ◽  
Eri van Duuren

The aims of this investigation were to calculate the pharmacokinetic parameters and to identify parameters, based on individual plasma concentration-time curves of amoxicillin and clavulanic acid in cats, that may govern the observed differences in absorption of both drugs. The evaluation was based on the data from plasma concentration-time curves obtained following a single-dose, open, randomised, two-way crossover phase-I study, each involving 24 female cats treated with two Amoxi-Clav formulations (formulation A was Clavubactin® and formulation was B Synulox® ; 80/20 mg, 24 animals, 48 drug administrations). Plasma amoxicillin and clavulanic acid concentrations were determined using validated bioassay methods. The half-life of elimination of amoxicillin is 1.2 h (t1/2= 1.24 ± 0.28 h, Cmax= 12.8 ± 2.12 μg/ml), and that of clavulanic acid 0.6 h (t1/2= 0.63 ± 0.16 h, Cmax= 4.60 ± 1.68 μg/ml). There is a ninefold variation in the AUCtof clavulanic acid for both formulations, while the AUCtof amoxicillin varies by a factor of two. The highest clavulanic acid AUCtvalues indicate the best absorption; all other data indicate less absorption. Taking into account that the amoxicillin–to–clavulanic acid dose ratio in the two products tested was 4:1, the blood concentration ratios may actually vary much more, apparently without compromising the products’ high efficacy against susceptible microorganisms.


2006 ◽  
Vol 50 (7) ◽  
pp. 2309-2315 ◽  
Author(s):  
Xiao-Jian Zhou ◽  
Barbara A. Fielman ◽  
Deborah M. Lloyd ◽  
George C. Chao ◽  
Nathaniel A. Brown

ABSTRACT Two phase I studies were conducted to assess the plasma pharmacokinetics of telbivudine and potential drug-drug interactions between telbivudine (200 or 600 mg/day) and lamivudine (100 mg/day) or adefovir dipivoxil (10 mg/day) in healthy subjects. Study drugs were administered orally. The pharmacokinetics of telbivudine were characterized by rapid absorption with biphasic disposition. The maximum concentrations in plasma (C max) were reached at median times ranging from 2.5 to 3.0 h after dosing. Mean single-dose C max and area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) were 1.1 and 2.9 μg/ml and 7.4 and 21.8 μg · h/ml for the 200- and 600-mg telbivudine doses, respectively. Steady state was reached after daily dosing for 5 to 7 days. The mean steady-state C max and area under the plasma concentration-time curve over the dosing interval (AUCτ) were 1.2 and 3.4 μg/ml and 8.9 and 27.5 μg · h/ml for the 200- and 600-mg telbivudine repeat doses, respectively. The steady-state AUCτ of telbivudine was 23 to 57% higher than the single-dose values. Concomitant lamivudine or adefovir dipivoxil did not appear to significantly alter the steady-state plasma pharmacokinetics of telbivudine; the geometric mean ratios and associated 90% confidence interval (CI) for the AUCτ of telbivudine alone versus in combination were 106.3% (92.0 to 122.8%) and 98.6% (86.4 to 112.5%) when coadministered with lamivudine and adefovir dipivoxil, respectively. Similarly, the steady-state plasma pharmacokinetics of lamivudine or adefovir were not markedly affected by the coadministration of telbivudine; the geometric mean ratios and associated 90% CI, alone versus in combination with telbivudine, were 99.0% (87.1 to 112.4%) and 92.2% (84.0 to 101.1%), respectively, for the lamivudine and adefovir AUCτ values. Moreover, the combination regimens studied were well tolerated in all subjects. The results from these studies provide pharmacologic support for combination therapy or therapy switching involving telbivudine, lamivudine, and adefovir dipivoxil for the treatment of chronic hepatitis B virus infection.


1984 ◽  
Vol 18 (9) ◽  
pp. 708-713 ◽  
Author(s):  
Tom B. Vree ◽  
Yechiel A. Hekster ◽  
Marijn J.M. Oosterbaan ◽  
Emiel F.S. Termond

Some pitfalls in selecting pharmacokinetic models are enumerated. To calculate the pharmacokinetic parameters of a drug that exhibits a biphasic convex plasma concentration-time curve, a two-compartment model does not automatically have to be applied. When only the parent drug in plasma is considered, a two-compartment model seems to be most appropriate. However, when the kinetic behavior of the metabolite has to be taken into account, and when a metabolic equilibrium underlies the metabolic elimination, the two-compartment model may not be appropriate. Also, when calculating the kinetic parameters of a drug with a concave biphasic plasma concentration-time curve, a capacity-limited metabolic conversion is not the automatic explanation for this observation. Limitations in renal excretion and bioavailability may be the reasons for this behavior. Convex and concave biphasic plasma concentration-time curves are illustrated, using sulfonamides as test compounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuqing Wang ◽  
Jianming Wu ◽  
Yunxia Li ◽  
Jing Yang ◽  
Long Wang ◽  
...  

To investigate the pharmacokinetics of 2, 3, 8-trimethylellagic (TMEA) in rats in vivo and determine the possible effects of the pathological conditions and compatibility, a rapid and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for quantitative determination was developed. TMEA and Artemetin (internal standard, IS) were separated on an Acquity Shim-pack GIST column with a total running time of 7 min using gradient elution at a flow rate of 0.3 mL/min. The intraday and interday relative standard deviations were <9.50%, and the relative error of accuracy was between −5.70% and 2.96%. The calibration curve of TMEA demonstrated good linearity with r2 = 0.9996, with the average recovery changing from 94.77% to 102.47% and the matrix effect from 93.16% to 100.15%. Compared with the normal group, the area under the plasma concentration-time curve from time 0 to the last time of quantifiable concentration (AUC(0 − t)), area under the plasma concentration-time curve from time 0 extrapolated to infinite time (AUC(0 − ∞)), and the maximum concentration (Cmax) of TMEA increased, whereas the time of maximum concentration (Tmax) and apparent clearance (CL/F) remarkably decreased in the TMEA group. With significantly reduced CL/F, AUC(0 − t), AUC(0 − ∞), and Cmax for TMEA were increased approximately one time after combining with 3, 7-Di-O-methylducheside A (DOMA). AUC(0 − t) and Cmax for TMEA in the 2, 3, 8-trimethylellagic-3, 8-dimethoxyellagic acid-2-oxyglucoside (TMEA-DMAG) group were significantly lower than that in the TMEA group with clearly prolonged Tmax and increased CL/F. These findings indicate that the changes in the pharmacokinetic parameters of TMEA may be caused by pathological and combination conditions.


2015 ◽  
Vol 33 (3) ◽  
pp. 223-229 ◽  
Author(s):  
De Ji ◽  
Ziwan Ning ◽  
Chunqin Mao ◽  
Yong Sun ◽  
Jing Liu ◽  
...  

Objective To investigate the influence of acupuncture at ST36 on the pharmacokinetics of Schisandra lignans including schisandrin, deoxyschisandrin and schisandrin B after intragastric administration of Schisandra chinensis (SC) in rats. Methods Twelve male Sprague-Dawley rats were randomly divided into two study groups: SC and SC+acupuncture. Rats in both groups received intragastric SC extract at 5.0 g/kg. Rats in the SC+acupuncture group additionally received acupuncture stimulation at ST36 for 30 min after SC administration. Acupuncture needles were rotated bilaterally for 1 min, left in situ for 20 min, then electrically stimulated for 10 min at 50 Hz frequency and 1–3 mA intensity. A sensitive and specific high performance liquid chromatography electrospray tandem mass spectrometry procedure was developed and validated for simultaneous analysis of three bioactive lignans (schisandrin, deoxyschisandrin and schisandrin B) in rat plasma. Results There were significant differences (p<0.05) between the two study groups in various pharmacokinetic parameters. Area under the plasma concentration–time curve (AUC0–t), area under the plasma concentration–time curve to time infinity (AUC0–∞) and peak plasma concentration (Cmax) for schisandrin, absorption half-life (T1/2α) and AUC0–t for deoxyschisandrin, and Cmax for schisandrin B were increased in the SC+acupuncture group compared with the SC group. T1/2α for schisandrin B only and time to peak concentration (Tmax) for all three lignans were reduced following acupuncture. Conclusions Acupuncture stimulation at ST36 affects the pharmacokinetics of SC in rats. Acupuncture may have a beneficial role in promoting the absorption of lignans from extracts of SC.


1986 ◽  
Vol 5 (4) ◽  
pp. 285-286 ◽  
Author(s):  
N. Scolding ◽  
M.J. Ward ◽  
A. Hutchings ◽  
P.A. Routledge

Activated charcoal (10 g) administered 1 h after a 600 mg oral dose of isoniazid to six healthy subjects did not reduce the area under the plasma concentration-time curve for isoniazid significantly. Charcoal administration is unlikely to be of value in isoniazid poisoning if delayed by an hour or more after the overdose.


Author(s):  
NEELAM SINGH ◽  
Giriraj T Kulkarni ◽  
Yatendra Kumar ◽  
GIRIRAJ T KULKARNI

Objective: Pharmacokinetic evaluation of montelukast sodium chronomodulated capsules (sustained-release solid dispersion of drug enclosed in pH-sensitive film-coated hard gelatin shell) and marketed tablets has been carried out in this study. Methods: A single oral dose of prepared capsules and marketed conventional tablets was administered in healthy male Dunkin-Hartley albino guinea pigs. Blood samples were collected at different time intervals and plasma concentration of drug was determined by reversed-phase high-performance liquid chromatography. Different pharmacokinetic parameters were assessed from plasma drug concentration-time profile by one-compartment model, first-order kinetics. Results: Pharmacokinetic parameters such as time to reach maximum concentration, elimination rate constant, elimination half-life, and mean residence time data indicates that drug release from chronomodulated capsules is significantly prolonged with initial release lag time of 3.5–4 h in comparison with marketed conventional tablets. However, maximum drug plasma concentration, area under the concentration-time curve, and apparent volume of distribution values show non-significant difference between capsules and marketed tablets. Conclusion: The findings specified that capsules were providing time controlled delivery of drug at a desired rate for prolonged time, which may be helpful for the prevention of episodic attack of asthma in early morning hours.


2014 ◽  
Vol 989-994 ◽  
pp. 1041-1043
Author(s):  
Ping Liu ◽  
Liang Sun ◽  
Jian Zhang ◽  
Rui Chen Guo

In this single-center, randomized, open-label, 3-way crossover study, subjects received each of the following: a single dose of Tramadol Hydrochloride Injection (THI) 35 mg, a single dose of Promethazine Hydrochloride Injection (PHI) 45 mg, and single dose of Compound Tramadol Hydrochloride Injection (CTHI) 80mg. Blood was collected and plasma was analyzed for the pharmacokinetic parameters (maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the plasma concentration-time curve, plasma elimination half-life, clearance, and apparent volume of distribution) of Tramadol and Promethazine. In general, several pharmacokinetic interactions were observed between Tramadol and Promethazine in the present study.


2009 ◽  
Vol 43 (4) ◽  
pp. 726-731 ◽  
Author(s):  
He-Ping Lei ◽  
Guo Wang ◽  
Lian-Sheng Wang ◽  
Dong-sheng Ou-yang ◽  
Hao Chen ◽  
...  

Background: Ginkgo biloba is one of the most popular herbal supplements in the world. The supplement has been shown to induce the enzymatic activity of CYP2C19, the main cytochrome P450 isozyme involved in voriconazole metabolism. Because this enzyme exhibits genetic polymorphism, the inductive effect was expected to be modulated by the CYP2C19 metabolizer status. Objective: To examine the possible effects of Ginkgo biloba as an inducer of CYP2C19 on single-dose pharmacokinetics of voriconazole in Chinese volunteers genotyped as either CVP2C19 extensive or poor metabolizers. Methods: Fourteen healthy, nonsmoking volunteers–7 CYP2C19 extensive metabolizers (2C19*1/2C19*1) and 7 poor metabolizers (2C19*2/2C19*2)–were selected to participate in this study. Pharmacokinetics of oral voriconazole 200 mg after administration of Ginkgo biloba 120 mg twice daily for 12 days were determined for up to 24 hours by liquid chromatography–electrospray tandem mass spectrometry in a 2-phase randomized crossover study with 4-week washout between phases. Results: For extensive metabolizers, the median value for voriconazole area under the plasma concentration–time curve from zero to infinity (AUC0-00) was 5.17 μg•h/mL after administration of voriconazole alone and 4.28 μg•/mL after voriconazole with Ginkgo biloba (p > 0.05). The other pharmacokinetic parameters of voriconazole such as AUC0-24, time to reach maximum concentration, half-life, and apparent clearance also did not change significantly for extensive metabolizers in the presence of Ginkgo biloba. Pharmacokinetic parameters followed a similar pattern for poor metabolizers. Conclusions: The results suggest that 12 days of treatment with Ginkgo biloba did not significantly alter the single-dose pharmacokinetics of voriconazole in either CYP2C19 extensive or poor metabolizers. Therefore, the pharmacokinetic interactions between voriconazole and Ginkgo biloba may have limited clinical significance.


Sign in / Sign up

Export Citation Format

Share Document