An Evaluation of the Potential for Pharmacokinetic Interaction between Tramadol and Cytochrome P450 2D6 Inhibitor Promethazine

2014 ◽  
Vol 989-994 ◽  
pp. 1041-1043
Author(s):  
Ping Liu ◽  
Liang Sun ◽  
Jian Zhang ◽  
Rui Chen Guo

In this single-center, randomized, open-label, 3-way crossover study, subjects received each of the following: a single dose of Tramadol Hydrochloride Injection (THI) 35 mg, a single dose of Promethazine Hydrochloride Injection (PHI) 45 mg, and single dose of Compound Tramadol Hydrochloride Injection (CTHI) 80mg. Blood was collected and plasma was analyzed for the pharmacokinetic parameters (maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the plasma concentration-time curve, plasma elimination half-life, clearance, and apparent volume of distribution) of Tramadol and Promethazine. In general, several pharmacokinetic interactions were observed between Tramadol and Promethazine in the present study.

Bioanalysis ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 1321-1336 ◽  
Author(s):  
Sara S Mourad ◽  
Eman I El-Kimary ◽  
Magda A Barary ◽  
Dalia A Hamdy

Aim: Assessment of pharmacokinetic interaction between linagliptin (LNG) and tadalafil (TDL) in healthy males. Methods: First, a novel LC–MS method was developed; second, a Phase IV, open-label, cross-over study was performed. Volunteers took single 20-mg TDL dose on day 1 followed by wash out period of 2 weeks then multiple oral dosing of 5-mg/day LNG for 13 days. On day 13, volunteers were co-administered 20-mg TDL. Results: LNG and TDL single doses did not affect QTc interval. Smoking did not alter pharmacokinetics/pharmacodynamics of LNG and TDL. Co-administration of LNG with TDL resulted in TDL longer time to reach maximum plasma concentration (Tmax), decreased oral clearance (Cl/F) and oral volume of distribution (Vd/F), increased its maximum plasma concentration (Cmax), area under concentration-time curve (AUC), muscle pain and QTc prolongation. Conclusion: LNG and TDL co-administration warrants monitoring and/or TDL dose adjustment.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
E. Wenzler ◽  
E. J. Ellis-Grosse ◽  
K. A. Rodvold

ABSTRACT The pharmacokinetics, safety, and tolerability of intravenous (i.v.) fosfomycin disodium (ZTI-01) and oral fosfomycin tromethamine were evaluated after a single dose in 28 healthy adult subjects. Subjects received a single 1-h i.v. infusion of 1 g and 8 g fosfomycin disodium and a single dose of 3 g oral fosfomycin tromethamine in a phase I, randomized, open-label, three-period crossover study. Serial blood and urine samples were collected before and up to 48 h after dosing. The mean pharmacokinetic parameters ± standard deviations of fosfomycin in plasma after 1 g and 8 g i.v., respectively, were the following: maximum clearance of drug in serum (C max), 44.3 ± 7.6 and 370 ± 61.9 μg/ml; time to maximum concentration of drug in serum (T max), 1.1 ± 0.05 and 1.08 ± 0.01 h; volume of distribution (V), 29.7 ± 5.7 and 31.5 ± 10.4 liters; clearance (CL), 8.7 ± 1.7 and 7.8 ± 1.4 liters/h; renal clearance (CLR), 6.6 ± 1.9 and 6.3 ± 1.6 liters/h; area under the concentration-time curve from 0 to infinity (AUC0–∞), 120 ± 28.5 and 1,060 ± 192 μg·h/ml; and half-life (t 1/2), 2.4 ± 0.4 and 2.8 ± 0.6 h. After oral administration, the parameters were the following: C max, 26.8 ± 6.4 μg/ml; T max, 2.25 ± 0.4 h; V/F, 204 ± 70.7 liters; CL/F, 17 ± 4.7 liters/h; CLR, 6.5 ± 1.8 liters/h; AUC0–∞, 191 ± 57.6 μg · h/ml; and t 1/2, 9.04 ± 4.5 h. The percent relative bioavailability of orally administered fosfomycin was 52.8% in relation to the 1-g i.v. dose. Approximately 74% and 80% of the 1-g and 8-g i.v. doses were excreted unchanged in the urine by 48 h compared to 37% after oral administration, with the majority of this excretion occurring by 12 h regardless of dosage form. No new safety concerns were identified during this study. The results of this study support further investigation of i.v. fosfomycin in the target patient population, including patients with complicated urinary tract infections and pyelonephritis.


2020 ◽  
Author(s):  
Fei Qin ◽  
Gan-Mi Wang ◽  
Jin-Ying Huang ◽  
Jia-Rong Wu ◽  
Wen-Jie Song ◽  
...  

Abstract BackgroundCiprofloxacin is a broad-spectrum fluoroquinolone antibiotic which is active against a wide range of Gram-positive and Gram-negative bacteria. The study mainly aimed to determine the bioequivalence of two branded ciprofloxacin hydrochloride tablets (250 mg) under the fasting and fed conditions.MethodsThe study was carried out in 48 healthy Chinese subjects under fasting and fed conditions with a randomized, open-label, two-formulation, two-sequence, two-period, single-dose crossover design. In each period of the study, the subjects were assigned to receive a single oral dose of 250 mg of ciprofloxacin hydrochloride. Blood samples were collected from an hour before dosing to 36 h after administration with 16 time points in total. The bioequivalence analysis was performed after ln-transformation of the ciprofloxacin pharmacokinetic parameters including maximum concentration (Cmax), area under the plasma concentration–time curve from time 0 to time t (AUC0-t), area under the plasma concentration-time curve from time 0 to infinity (AUC0-∞). Two formulations are considered bioequivalent if the 90% confidence intervals (CIs) for the test/reference geometric mean ratios (GMRs) for the ln-transformed pharmacokinetic parameters fall within the standard acceptance range of 80% – 125%. ResultsIn total of 48 subjects were enrolled in the fasting and fed studies, and one of the subjects was excluded before the administration. In the fasting study, the 90% CIs for the test/reference GMRs of the ln-transformed data for Cmax, AUC0–t, and AUC0–∞ were 85.41% to 100.97%, 95.40% to 100.27%, and 95.48% to 100.30%, respectively. For the fed study, the 90% CIs for the test/reference GMRs of the ln-transformed data for Cmax, AUC0–t, and AUC0–∞ were 90.15% to 113.75%, 99.10% to 103.77% and 99.11% to 103.80%, respectively. A total of 8 of 47 subjects experienced AEs in the fasting and fed studies.ConclusionsIn the study, the generic (test) product of ciprofloxacin hydrochloride 250 mg was bioequivalent to the innovator (reference) product after a single oral dose administration under the fasting and fed conditions. Both two brands of ciprofloxacin tablets were safe and well tolerated.Trial registrationThe clinical trial was registered at Center for the Drug Evaluation of the National Medical Products Administration (registration number: CTR20171152; date of registration:September 25, 2017; http://www.chinadrugtrials.org.cn/clinicaltrials.searchlistdetail.dhtml).


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fabrizio Stocchi ◽  
Laura Vacca ◽  
Paola Grassini ◽  
Stephen Pawsey ◽  
Holly Whale ◽  
...  

Objectives.To characterize the pharmacokinetic profile of levodopa (L-dopa) and carbidopa after repeated doses of the effervescent tablet of melevodopa/carbidopa (V1512; Sirio) compared with standard-release L-dopa/carbidopa in patients with fluctuating Parkinson’s disease. Few studies assessed the pharmacokinetics of carbidopa to date.Methods.This was a single-centre, randomized, double-blind, double-dummy, two-period crossover study. Patients received V1512 (melevodopa 100 mg/carbidopa 25 mg) or L-dopa 100 mg/carbidopa 25 mg, 7 doses over 24 hours (Cohort 1), 4 doses over 12 hours (Cohort 2), or 2 doses over 12 hours in combination with entacapone 200 mg (Cohort 3). Pharmacokinetic parameters included area under the plasma-concentration time curve (AUC), maximum plasma concentration (Cmax), and time toCmax(tmax).Results.Twenty-five patients received at least one dose of study medication. L-dopa absorption tended to be quicker and pharmacokinetic parameters less variable after V1512 versus L-dopa/carbidopa, both over time and between patients. Accumulation of L-dopa in plasma was less noticeable with V1512. Carbidopa exposure and interpatient variability was lower when V1512 or L-dopa/carbidopa was given in combination with entacapone. Both treatments were well tolerated.Conclusions.V1512 provides a more reliable L-dopa pharmacokinetic profile versus standard-release L-dopa/carbidopa, with less drug accumulation and less variability. This trial is registered with ClinicalTrials.govNCT00491998.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13512-e13512 ◽  
Author(s):  
Arthur P. Staddon ◽  
Trilok V. Parekh ◽  
Roland Elmar Knoblauch ◽  
Chi Keung ◽  
Apexa Bernard ◽  
...  

e13512 Background: Trabectedin (Yondelis; T) is a tetrahydroisoquinoline compound initially isolated from the marine tunicate, Ecteinascidia turbinata, and currently produced synthetically. It is primarily metabolized by the cytochrome P450 (CYP)3A4 enzyme. Thus, potent inducers or inhibitors of this enzyme may alter the plasma concentrations of T. This study assessed the effects of rifampin (R), a strong CYP3A4 inducer, on the pharmacokinetics (PK) and safety of T. Methods: In this 2-way crossover study, patients (≥18 years of age) with locally advanced or metastatic disease were randomized (1:1) to receive one of the 2 treatment sequences: sequence 1: R plus T followed 28 days later by T; sequence 2: T followed 28 days later by R plus T. During each sequence, R (600 mg/day) was administered for 6 consecutive days and T (1.3 mg/m2, IV) was administered over a 3 hour infusion. Dexamethasone (20 mg, IV) was administered before T administration. PK and safety of T were evaluated with and without coadministration of R. Results: Of the 11 enrolled patients, 8 were PK evaluable. Coadministration of R with T decreased mean maximum plasma concentration (Cmax) by approximately 22% and mean area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUClast) by approximately 31% (Table 1). Coadministration of R with T also resulted in 23% shorter elimination half-life. Overall, the safety profile of T was comparable when administered alone or with R. Conclusions: In comparison with T alone, coadministration of R resulted in reduced systemic exposure of T in these 8 patients, as measured by Cmax and AUClast. The coadministration of potent inducers of CYP3A4 with T may increase the metabolic clearance of T. Clinical trial information: NCT01273480. [Table: see text]


2013 ◽  
Vol 57 (5) ◽  
pp. 2304-2309 ◽  
Author(s):  
Rolf van Heeswijk ◽  
Peter Verboven ◽  
Ann Vandevoorde ◽  
Petra Vinck ◽  
Jan Snoeys ◽  
...  

ABSTRACTHepatitis C virus (HCV) antibody is present in most patients enrolled in methadone maintenance programs. Therefore, interactions between the HCV protease inhibitor telaprevir and methadone were investigated. The pharmacokinetics ofR-andS-methadone were measured after administration of methadone alone and after 7 days of telaprevir (750 mg every 8 h [q8h]) coadministration in HCV-negative subjects on stable, individualized methadone therapy. UnboundR-methadone was measured in predose plasma samples before and during telaprevir coadministration. Safety and symptoms of opioid withdrawal were evaluated throughout the study. In total, 18 subjects were enrolled; 2 discontinued prior to receiving telaprevir. The minimum plasma concentration in the dosing interval (Cmin), the maximum plasma concentration (Cmax), and the area under the plasma concentration-time curve from h 0 (time of administration) to 24 h postdose (AUC0–24) forR-methadone were reduced by 31%, 29%, and 29%, respectively, in the presence of telaprevir. The AUC0–24ratio ofS-methadone/R-methadone was not altered. The median unbound percentage ofR-methadone increased by 26% in the presence of telaprevir. TheR-methadone median (absolute) unboundCminvalues in the absence (10.63 ng/ml) and presence (10.45 ng/ml) of telaprevir were similar. There were no symptoms of opioid withdrawal and no discontinuations due to adverse events. In summary, exposure to totalR-methadone was reduced by approximately 30% in the presence of telaprevir, while the exposure to unboundR-methadone was unchanged. No symptoms of opioid withdrawal were observed. These results suggest that dose adjustment of methadone is not required when initiating telaprevir treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT00933283.)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seonghae Yoon ◽  
Seongmee Jeong ◽  
Eben Jung ◽  
Ki Soon Kim ◽  
Inseung Jeon ◽  
...  

AbstractTo investigate pharmacokinetic and pharmacodynamic differences of zolpidem between males and females and their causes, including CYP3A4 activity. A single oral dose of zolpidem (10 mg) was administered to 15 male and 15 female healthy subjects. Blood samples were collected up to 12 h post-dose to determine plasma zolpidem concentrations. Pharmacokinetic parameters were obtained using non-compartmental analysis. Digit symbol substitution test, choice reaction time, and visual analog scale of sleepiness were used to evaluate pharmacodynamics. We measured CYP3A4 activity using 4β-hydroxycholesterol, an endogenous metabolite. Mean maximum plasma concentration and area under the plasma concentration–time curve were higher for females than for males (9.9% and 32.5%, respectively); other pharmacokinetic parameters showed no significant differences. Pharmacodynamic scores for females showed delayed recovery compared with that for males. CYP3A4 activity was higher in females than in males (p = 0.030). There was no serious adverse event, and adverse event incidence was not different between the sexes. Zolpidem exposure was about 30% higher in females than in males. Delayed pharmacodynamic score recovery in females could be related to higher zolpidem concentrations. Although apparent clearance was lower in females, systemic clearance might not be the cause of the different exposures to zolpidem.


1970 ◽  
Vol 6 (1) ◽  
pp. 93-97
Author(s):  
MS Islam ◽  
MMH Sikder ◽  
MA Awal ◽  
M Mostofa ◽  
AA Trisha

The study was carried out to determine the biodisposition kinetics of ciprofloxacin in sheep model in Department of Pharmacology, Bangladesh Agricultural University. Healthy sheep of both sexes (n=65) were divided into 13 groups, each consists of five and given a single dose of ciprofloxacin @ 5 mg/kg bwt intramuscularly .Blood sample was collected from each group of sheep at 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 10 and 12 hours interval respectively. Serum concentration of ciprofloxacin was determined by spectrophotometric method. The pharmacokinetic parameters were measured by single compartment open model and first order kinetics. The peak concentration of ciprofloxacin was 3.56±0.15mg/ ml, absorption half-life and biological half-life were 0.0846±1.79 and 1.75±0.15 h respectively. The apparent volume of distribution was found 35.54 mg/liter. The absorption rate constant was 8.188h-1, MRT was 2.647h-1 and total body clearances were found 16.88 h-1. These result suggested that a dose of 5 mg/kg bwt provides maximum plasma concentration and is effective in the control of many infectious diseases of sheep. Key words: Plasma pharmacokinetics, ciprofloxacin, sheep DOI = 10.3329/bjvm.v6i1.1344 Bangl. J. Vet. Med. (2008). 6 (1): 93-97


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Eric Wenzler ◽  
Susan C. Bleasdale ◽  
Monica Sikka ◽  
Kristen L. Bunnell ◽  
Matthew Finnemeyer ◽  
...  

ABSTRACTThe pharmacokinetics (PK), safety, and tolerability of two repeated dosing regimens of oral fosfomycin tromethamine were evaluated in 18 healthy adult subjects. Subjects received 3 g every other day (QOD) for 3 doses and then every day (QD) for 7 doses, or vice versa, in a phase I, randomized, open-label, two-period-crossover study. Serial blood (n= 11) and urine (n= 4 collection intervals) samples were collected before and up to 24 h after dosing on days 1 and 5, along with predose concentrations on days 3 and 7. PK parameters were similar between days 1 and 5 within and between dosing regimens. The mean (± standard deviation [SD]) PK parameters for fosfomycin in plasma on day 5 during the respective QOD and QD dosing regimens were as follows: maximum concentration of drug in serum (Cmax) = 24.4 ± 6.2 versus 23.8 ± 5.6 μg/ml, time toCmax(Tmax) = 2.2 ± 0.7 versus 2.0 ± 0.4 h, apparent volume of distribution (V/F) = 141 ± 67.9 versus 147 ± 67.6 liters, apparent clearance (CL/F) = 21.4 ± 8.0 versus 20.4 ± 5.3 liters/h, renal clearance (CLR) = 7.5 ± 4.1 versus 7.3 ± 3.5 liters/h, area under the concentration-time curve from 0 to 24 h (AUC0–24) = 151.6 ± 35.6 versus 156.6 ± 42.5 μg · h/ml, and elimination half-life (t1/2) = 4.5 ± 1.1 versus 5.0 ± 1.7 h. Urine concentrations peaked at approximately 600 μg/ml through the 0- to 8-h urine collection intervals but displayed significant interindividual variability. Roughly 35 to 40% of the 3-g dose was excreted in the urine by 24 h postdose. No new safety concerns were identified during this study. The proportion of diarrhea-free days during the study was significantly lower with the QD regimen than with the QOD regimen (61% versus 77%;P< 0.0001). Further studies to establish the clinical benefit/risk ratio for repeated dosing regimens of oral fosfomycin tromethamine are warranted. (This trial is registered at ClinicalTrials.gov under registration no. NCT02570074.)


2013 ◽  
Vol 57 (12) ◽  
pp. 6158-6164 ◽  
Author(s):  
Manoli Vourvahis ◽  
Anna Plotka ◽  
Laure Mendes da Costa ◽  
Annie Fang ◽  
Jayvant Heera

ABSTRACTThis open-label, fixed-sequence, phase 1 study evaluated the pharmacokinetic interaction between maraviroc (MVC) and ritonavir-boosted fosamprenavir (FPV/r) in healthy subjects. In period 1, subjects received 300 mg of MVC twice daily (BID; cohort 1) or once daily (QD; cohort 2) for 5 days. In period 2, cohort 1 subjects received 700/100 mg of FPV/r BID alone on days 1 to 10 and then FPV/r at 700/100 mg BID plus MVC at 300 mg BID on days 11 to 20; cohort 2 subjects received FPV/r at 1,400/100 mg QD alone on days 1 to 10 and then FPV/r at 1,400/100 mg QD plus MVC at 300 mg QD on days 11 to 20. Pharmacokinetic parameters, assessed on day 5 of period 1 and on days 10 and 20 of period 2, included the maximum plasma concentration (Cmax), the concentration at end of dosing interval (Cτ), and the area under the curve over dosing interval (AUCτ). Safety and tolerability were also assessed. MVC geometric mean AUCτ,Cmax, andCτwere increased by 149, 52, and 374%, respectively, after BID dosing with FPV/r, and by 126, 45, and 80%, respectively, after QD dosing. Amprenavir (the active form of the prodrug fosamprenavir) and ritonavir exposures were decreased in the presence of MVC with amprenavir AUCτ,Cmax, andCτdecreased by 34 to 36% in the presence of FPV/r plus maraviroc BID and by 15 to 30% with FPV/r plus MVC QD both compared to FPV/r alone. The overall all-causality adverse-event (AE) incidence rate was 96.4%; all AEs were of mild or moderate severity. Commonly reported treatment-related AEs (>20% of patients overall) included diarrhea, fatigue, abdominal discomfort, headache, and nausea. No serious AEs or deaths occurred. In summary, maraviroc exposure increased in the presence of FPV/r, whereas MVC coadministration decreased amprenavir and ritonavir exposures. MVC dosed at 300 mg BID with FPV/r is not recommended due to concerns of lower amprenavir exposures; however, no dose adjustment is warranted with MVC at 150 mg BID in combination with FPV/r based on the available clinical data. MVC plus FPV/r was generally well tolerated; no new safety signals were detected.


Sign in / Sign up

Export Citation Format

Share Document