scholarly journals Bruceine D and Afatinib Combination Inhibits Ovarian Cancer Cells Proliferation and Migration Through DNA Damage Repair and EGFR Pathway

Author(s):  
Feng Lin ◽  
Ju-fan Zhu ◽  
Luo Wang ◽  
Yuan-jun Yang ◽  
Ru-ru Zheng ◽  
...  

Abstract Owing to the high rates of relapse and migration, ovarian cancer has been recognized as the most lethal gynecological malignancy worldwide. The activity of the EGFR signaling pathway is frequently associated with ovarian cancer cell proliferation and migration. Despite this knowledge, inhibition of EGFR signaling in ovarian cancer patients failed to achieve satisfactory therapeutic effects. In this study, we identified that Bruceine D and EGFR inhibitor, afatinib, combination resulted in synergistic anti- ovarian cancer effects. The results indicated that compared with one of both drugs alone, the combination of Bruceine D and afatinib slowed the DNA replication rate, inhibition of cell viability, and proliferation and clone formation. This resulted in cell cycle arrest and cell apoptosis. In addition, the combination of Bruceine D and afatinib possessed a stronger ability to inhibit the ovarian cancer cell adhesion and migration than treatment with Bruceine D or afatinib alone. Mechanistically, the combined treatment triggered intense DNA damage, suppressed DNA damage repair, and enhanced the inhibition of the EGFR pathway. These results demonstrated that compared with each pathway inhibition, combined blocking of both DNA damage repair and the EGFR pathway appears to more effective against ovarian cancer treatment. The results support the potential of Bruceine D and afatinib combination as a therapeutic strategy for ovarian cancer patients.

2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Ling Chen ◽  
Shang Cai ◽  
Jing-mei Wang ◽  
Ying-ying Huai ◽  
Pei-Hua Lu ◽  
...  

AbstractBromodomain testis-specific factor (BRDT) is a member of the bromodomain and extra-terminal (BET) family proteins. Its expression and potential functions in ovarian cancer were examined. We show that BRDT is overexpressed in human ovarian cancer tissues and in established (CaOV3)/primary ovarian cancer cells. However, its expression is low in ovarian epithelial tissues and cells. Significantly, shRNA-induced silencing or CRISPR/Cas9-mediated knockout of BRDT inhibited ovarian cancer cell growth, viability, proliferation and migration, and induced significant apoptosis activation. Conversely, exogenous overexpression of BRDT, by a lentiviral construct, augmented CaOV3 cell proliferation and migration. In CaOV3 cells expression of two key BRDT target genes, polo-like kinase 1 (PLK1) and aurora kinase C (AURKC), was downregulated by BRDT shRNA or knockout, but upregulated with BRDT overexpression. In vivo, xenograft tumors-derived from BRDT-knockout CaOV3 cells grew significantly slower than control tumors in severe combined immunodeficient (SCID) mice. Furthermore, intratumoral injection of BRDT shRNA lentivirus potently inhibited the growth of primary ovarian cancer xenografts in SCID mice. Downregulation of PLK1 and AURKC was detected in BRDT-knockout and BRDT-silenced tumor tissues. Collectively, BRDT overexpression promotes ovarian cancer cell progression. Targeting BRDT could be a novel strategy to treat ovarian cancer.


2021 ◽  
Vol 22 (4) ◽  
pp. 1826 ◽  
Author(s):  
Masashi Ishikawa ◽  
Masae Iwasaki ◽  
Hailin Zhao ◽  
Junichi Saito ◽  
Cong Hu ◽  
...  

Inhalational anaesthetics were previously reported to promote ovarian cancer malignancy, but underlying mechanisms remain unclear. The present study aims to investigate the role of sevoflurane- or desflurane-induced microRNA (miRNA) changes on ovarian cancer cell behaviour. The cultured SKOV3 cells were exposed to 3.6% sevoflurane or 10.3% desflurane for 2 h. Expression of miR-138, -210 and -335 was determined with qRT-PCR. Cell proliferation and migration were assessed with wound healing assay, Ki67 staining and Cell Counting Kit-8 (CCK8) assay with or without mimic miR-138/-210 transfections. The miRNA downstream effector, hypoxia inducible factor-1α (HIF-1α), was also analysed with immunofluorescent staining. Sevoflurane or desflurane exposure to cancer cells enhanced their proliferation and migration. miR-138 expression was suppressed by both sevoflurane and desflurane, while miR-210 expression was suppressed only by sevoflurane. miR-335 expression was not changed by either sevoflurane or desflurane exposure. The administration of mimic miR-138 or -210 reduced the promoting effects of sevoflurane and desflurane on cancer cell proliferation and migration, in line with the HIF-1α expression changes. These data indicated that inhalational agents sevoflurane and desflurane enhanced ovarian cancer cell malignancy via miRNA deactivation and HIF-1α. The translational value of this work needs further study.


Sign in / Sign up

Export Citation Format

Share Document