scholarly journals Chondrocyte Targeting Gold Nanoparticles Protect Growth Plate Against Inflammatory Damage By Maintaining Cartilage Balance

Author(s):  
Xue Bai ◽  
Hongyan Sun ◽  
Lina Jia ◽  
Junjie Xu ◽  
Peng Zhang ◽  
...  

Abstract Background: Cartilage destruction caused by inflammation is a clinical challenge. Many studies have investigated cartilage destruction in adults, but little research was conducted on children. Results: The gaps without chondrocytes and ECM between the proliferative and hypertrophy zones of the GP cartilage were formation after the treatment of LPS, but the gaps were not observed in the AuNPs + LPS group. This finding can be attributed to the capability of AuNPs to target to the chondrocytes and reduce the release of inflammatory cytokines and secretion of ECM degradation factors induced by LPS. And then, the LPS-induced apoptosis rate of mouse chondrocytes and ECM degradation rate were inhibited. Finally, the balance of catabolic and anabolic factors in the ECM was maintained.Conclusion: These findings indicate that AuNPs can partially protect the cartilage of children from inflammatory damage by suppressing chondrocyte apoptosis and ECM degradation.

2007 ◽  
Vol 77 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Cristina C. Teixeira ◽  
Aida P. Padron Costas ◽  
Yelena Nemelivsky

Abstract Objective: To determine the role of mitochondria in chondrocyte apoptosis induced by inorganic phosphate (Pi). Materials and Methods: Chondrocytes isolated from the growth plates of chick embryo tibia were treated with Pi in serum-free media; chondrocyte viability, mitochondrial membrane potential, cytochrome c release from mitochondria, caspase 3 activity, endonuclease activity, and DNA fragmentation were investigated. Results: Exposure to Pi for 24 hours induced apoptosis in growth plate chondrocytes through a pathway that involved loss of mitochondrial function, release of cytochrome c into the cytoplasm, increases in caspase 3 and endonuclease activities, and fragmentation of DNA. Conclusions: This study suggests that mitochondria are important players in Pi-induced apoptosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yao Li ◽  
Yaosen Wu ◽  
Kaixia Jiang ◽  
Wen Han ◽  
Jing Zhang ◽  
...  

Osteoarthritis (OA) is an age-related degenerative disease with complicated pathology involving chondrocyte apoptosis and extracellular matrix (ECM) degradation. Previous studies have shown that moderate autophagy has a protective effect against apoptosis in chondrocyte. Mangiferin is a natural polyphenol and exerts multiple pharmacological effects on different diseases in various preclinical studies. In this study, we investigated the effects of mangiferin on OA and delineated a potential molecular mechanism. In vitro, mangiferin treatment inhibited the expression of proapoptotic proteins induced by tert-butyl hydroperoxide (TBHP), increased the expression of antiapoptotic Bcl-2, and prevented ECM degradation by inhibiting the production of matrix-degrading enzyme. Mechanistically, mangiferin enhanced autophagy by activating the AMP-activated protein kinase (AMPK) signaling pathway. On the contrary, inhibition of autophagy partly abolished the protective effects of mangiferin on antiapoptosis and ECM synthesis in TBHP-treated chondrocyte. Correspondingly, the protective effect of mangiferin was also found in a mouse OA model. In conclusion, our results suggested that mangiferin serves as a potentially applicable candidate for treating OA.


Author(s):  
Mingli Feng ◽  
Lin Jing ◽  
Jingbo Cheng ◽  
Shuai An ◽  
Jiang Huang ◽  
...  

AbstractOsteoarthritis (OA) is a chronic disease characterized by articular cartilage degeneration and uncontrolled chondrocyte apoptosis. At present, accumulating evidence introduces that circular RNA (circRNA) is involved in the development of OA. The aim of our study was to explore the role and the functional mechanism of circ_0020093 in OA cell model. Human chondrocytes were treated with interleukin-1 beta (IL-1β) to construct OA model. The expression of circ_0020093, miR-23b, and Sprouty 1 (SPRY1) mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell apoptosis was assessed by flow cytometry assay. The expression of extracellular matrix (ECM)-associated markers and SPRY1 protein level was detected by qRT-PCR and Western blot. Bioinformatics analysis-predicted relationship between miR-23b and circ_0020093 or SPRY1 was further verified by dual-luciferase reporter assay and RNA pull-down assay. In this study, we found that the expression of circ_0020093 and SPRY1 was declined, while miR-23b expression was elevated in IL-1β-treated chondrocytes. IL-1β induced chondrocyte apoptosis and ECM degradation, while these negative effects were alleviated by circ_0020093 overexpression or miR-23b inhibition. MiR-23b was a target of circ_0020093, and SPRY1 was a downstream target of miR-23b. Rescue experiments showed that miR-23b enrichment reversed the role of circ_0020093 overexpression, and SPRY1 knockdown also reversed the effects of miR-23b inhibition. Importantly, circ_0020093 positively regulated SPRY1 expression by targeting miR-23b. In conclusion, circ_0020093 ameliorates IL-1β-induced apoptosis and ECM degradation of human chondrocytes by regulating the miR-23b/SPRY1 axis.


2008 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
K.D Evans ◽  
L.E Sheppard ◽  
D.I Grossman ◽  
S.H Rao ◽  
R.B Martin ◽  
...  

Bisphosphonates, used to treat diseases exhibiting increased osteoclast activity, reduce longitudinal bone growth through an as yet undefined mechanism. Pamidronate, an aminobisphosphonate, was given weekly to mice at 0, 1.25, or 2.50 mg/kg/wk beginning at 4 weeks of age. At 12 weeks of age, humeral length, growth plate area, regional chondrocyte cell numbers, chondrocyte apoptosis, TRAP stained osteoclast number, and osteoclast function assessed by cathepsin K immunohistochemistry were quantified. Humeral length was decreased in pamidronate treated mice compared to vehicle control mice, and correlated with greater growth plate areas reflecting greater proliferative and hypertrophic chondrocyte cell numbers with fewer hypertrophic cells undergoing apoptosis. Pamidronate treatment increased TRAP stained osteoclast numbers yet decreased cathepsin K indicating that pamidronate repressed osteoclast maturation and function. The data suggest that long term cyclic pamidronate treatment impairs bone growth by inhibition of osteoclast maturation thereby reducing cartilage-to-bone turnover within the growth plate.


Inflammation ◽  
2014 ◽  
Vol 38 (3) ◽  
pp. 1044-1049 ◽  
Author(s):  
Marcelo B. Dohnert ◽  
Gabriela K. Ferreira ◽  
Paulo Cesar Lock Silveira ◽  
Elton Torres Zanoni ◽  
Luciana H. Dohnert ◽  
...  

2008 ◽  
Vol 335 (3) ◽  
pp. 539-549 ◽  
Author(s):  
Sonja Gaber ◽  
Eva Elisa Fischerauer ◽  
Eleonore Fröhlich ◽  
Gregor Janezic ◽  
Florian Amerstorfer ◽  
...  

2010 ◽  
Vol 206 (2) ◽  
pp. 183-193 ◽  
Author(s):  
José Edgar Nicoletti-Carvalho ◽  
Tatiane C Araújo Nogueira ◽  
Renata Gorjão ◽  
Carla Rodrigues Bromati ◽  
Tatiana S Yamanaka ◽  
...  

Unfolded protein response (UPR)-mediated pancreatic β-cell death has been described as a common mechanism by which palmitate (PA) and pro-inflammatory cytokines contribute to the development of diabetes. There are evidences that interleukin 6 (IL6) has a protective action against β-cell death induced by pro-inflammatory cytokines; the effects of IL6 on PA-induced apoptosis have not been investigated yet. In the present study, we have demonstrated that PA selectively disrupts IL6-induced RAC-alpha serine/threonine-protein kinase (AKT) activation without interfering with signal transducer and activator of transcription 3 phosphorylation in RINm5F cells. The inability of IL6 to activate AKT in the presence of PA correlated with an inefficient protection against PA-induced apoptosis. In contrast to PA, IL6 efficiently reduced apoptosis induced by pro-inflammatory cytokines. In addition, we have demonstrated that IL6 is unable to overcome PA-stimulated UPR, as assessed by activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression, X-box binding protein-1 gene mRNA splicing, and pancreatic eukaryotic initiation factor-2α kinase phosphorylation, whereas no significant induction of UPR by pro-inflammatory cytokines was detected. This unconditional stimulation of UPR and apoptosis by PA was accompanied by the stimulation of CHOP and tribble3 (TRIB3) expression, irrespective of the presence of IL6. These findings suggest that IL6 is unable to protect pancreatic β-cells from PA-induced apoptosis because it does not repress UPR activation. In this way, CHOP and ATF4 might mediate PA-induced TRIB3 expression and, by extension, the suppression of IL6 activation of pro-survival kinase AKT.


2007 ◽  
Vol 282 (46) ◽  
pp. 33698-33706 ◽  
Author(s):  
Shufang Wu ◽  
Janna K. Flint ◽  
Geoffrey Rezvani ◽  
Francesco De Luca

NF-κB is a group of transcription factors involved in cell proliferation, differentiation, and apoptosis. Mice deficient in the NF-κB subunits p50 and p52 have retarded growth, suggesting that NF-κB is involved in bone growth. Yet, it is not clear whether the reduced bone growth of these mice depends on the lack of NF-κB activity in growth plate chondrocytes. Using cultured rat metatarsal bones and isolated growth plate chondrocytes, we studied the effects of two NF-κB inhibitors (pyrrolidine dithiocarbamate (PDTC) or BAY11-7082 (BAY)), p65 short interference RNA (siRNA), and of the overexpression of p65 on chondrocyte proliferation, differentiation, and apoptosis. To further define the underlying mechanisms, we studied the functional interaction between NF-κB p65 and BMP-2 in chondrocytes. PDTC and BAY suppressed metatarsal linear growth. Such growth inhibition resulted from decreased chondrocyte proliferation and differentiation and from increased chondrocyte apoptosis. In cultured chondrocytes, the inhibition of NF-κB p65 activation (by PDTC and BAY) and expression (by p65 siRNA) led to the same findings observed in cultured metatarsal bones. In contrast, overexpression of p65 in cultured chondrocytes induced chondrocyte proliferation and differentiation and prevented apoptosis. Although PDTC, BAY, and p65 siRNA reduced the expression of BMP-2 in cultured growth plate chondrocytes, the overexpression of p65 increased it. The addition of Noggin, a BMP-2 antagonist, neutralized the stimulatory effects of p65 on chondrocyte proliferation and differentiation, as well as its anti-apoptotic effect. In conclusion, our findings indicate that NF-κB p65 expressed in growth plate chondrocytes facilitates growth plate chondrogenesis and longitudinal bone growth by inducing BMP-2 expression and activity.


Sign in / Sign up

Export Citation Format

Share Document