Advance Aerobic Granular Sludge Development for the Treatment of Low Strength Wastewater

Author(s):  
Hazlami Fikri Basri ◽  
Aznah Nor Anuar ◽  
Mohd Hakim Ab Halim ◽  
Muhammad Ali Yuzir

Abstract The aim of the present study was to assess the start-up performance of aerobic granular sludge for the treatment of low-strength (COD <200 mg L−1) domestic wastewater by the application of a diatomite carrier. The feasibility was evaluated in terms of the start-up period and stability of the aerobic granules as well as COD and phosphate removal efficiencies. A single pilot-scale Sequencing Batch Reactor (SBR) was used and operated separately for the control granulation and granulation with diatomite. Complete granulation (granulation rate ≥ 90%) was achieved within 20 days for the case of diatomite with an average influent COD concentration of 184 mg L−1. In comparison, control granulation required 85 days to accomplish the same feat with a higher average influent COD concentration (253 mg L−1). The presence of diatomite solidifies the core of the granules and enhances physical stability. Diatomite granules recorded the strength and SVI of 18 IC and 53 mL/g SS which clearly superior to control granulation (19.3 IC, 81 mL/g SS). Quick start-up and achievement of stable granules lead to an efficient COD (89%) and phosphate removal (74%) in 50 days of bioreactor operation. Interestingly, this study revealed that diatomite has some special mechanism in enhancing the removal of both COD and phosphate. The result of this research implies that the advanced development of granular sludge by using diatomite can provide a promising low-strength wastewater treatment.

Aerobic granular sludge can be used to treat various types of wastewater, such as industrial, municipal and domestic wastewater. This study investigated the treatment of low-strength domestic wastewater while simultaneously developed aerobic granular sludge in a sequencing batch reactor (SBR). Activated sludge was used as the seeding for granulation. The results indicated good COD and ammoniacal nitrogen removal at 72% and 73%, respectively. Aerobic granular sludge was successfully developed with low sludge volume index (SVI30) of 29 mL/g, which demonstrated an excellent settling property of aerobic granular sludge. Biomass concentration increased significantly compared to the seed sludge, indicating high biomass density in the SBR system. Settling velocity of aerobic granular sludge was significantly higher compared to the conventional activated sludge. This study showed the feasibility of aerobic granular sludge to be developed using low-strength domestic wastewater. Moreover, this study demonstrated the long-term application of aerobic granular sludge in domestic wastewater treatment.


2009 ◽  
Vol 60 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. López–Palau ◽  
J. Dosta ◽  
J. Mata-Álvarez

Aerobic granular sludge was cultivated in a sequencing batch reactor (SBR) in order to remove the organic matter present in winery wastewater. The formation of granules was performed using a synthetic substrate. The selection parameter was the settling time, as well as the alternation of feast-famine periods, the air velocity and the height/diameter ratio of the reactor. After 10 days of operation under these conditions, the first aggregates could be observed. Filamentous bacteria were still present in the reactor but they disappeared progressively. During the start-up, COD loading was increased from 2.7 to 22.5 kg COD/(m3 day) in order to obtain a feast period between 30 and 60 minutes. At this point, granules were quite round, with a particle diameter between 3.0 and 4.0 mm and an average density of 6 g L−1. After 120 days of operation, synthetic media was replaced by real winery wastewater, with a COD loading of 6 kg COD/(m3 day). The decrease of the organic load implied a reduction of the aggregate diameter and a density increase up to 13.2 g L−1. The effluent was free of organic matter and the solids concentration in the reactor reached 6 g VSS L−1.


2015 ◽  
Vol 13 (3) ◽  
pp. 746-757 ◽  
Author(s):  
Bei Long ◽  
Chang-zhu Yang ◽  
Wen-hong Pu ◽  
Jia-kuan Yang ◽  
Guo-sheng Jiang ◽  
...  

Mature aerobic granular sludge (AGS) was inoculated for the start-up of a pilot-scale sequencing batch reactor for the treatment of high concentration solvent recovery raffinate (SRR). The proportion of simulated wastewater (SW) (w/w) in the influent gradually decreased to zero during the operation, while volume of SRR gradually increased from zero to 10.84 L. AGS was successfully domesticated after 48 days, which maintained its structure during the operation. The domesticated AGS was orange, irregular, smooth and compact. Sludge volume index (SVI), SV30/SV5, mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS), extracellular polymeric substances, proteins/polysaccharides, average particle size, granulation rate, specific oxygen utilization rates (SOUR)H and (SOUR)N of AGS were about 38 mL/g, 0.97, 0.52, 39.73 mg/g MLVSS, 1.17, 1.51 mm, 96.66%, 47.40 mg O2/h g volatile suspended solids (VSS) and 8.96 mg O2/h g VSS, respectively. Good removal effect was achieved by the reactor. Finally, the removal rates of chemical oxygen demand (COD), total inorganic nitrogen (TIN), NH4+-N and total phosphorus (TP) were more than 98%, 96%, 97% and 97%, respectively. The result indicated gradually increasing the proportion of real wastewater in influent was a useful domestication method, and the feasibility of AGS for treatment of high C/N ratio industrial wastewater.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


2006 ◽  
Vol 53 (9) ◽  
pp. 63-70 ◽  
Author(s):  
X. Wang ◽  
M. Ji ◽  
J.F. Wang ◽  
Z. Liu ◽  
Z.Y. Yang

An unusual phenomenon of anaerobic phosphate uptake under alternating anaerobic/aerobic condition was observed in a granular sludge sequencing batch reactor, fed with acetate as sole organic substrate. Anaerobic phosphate uptake efficiencies remained at 50–70% as the influent P/COD was increased from 2/100 to 4/100, and results showed that anaerobic uptake of phosphate was correlated with anaerobic absorption of acetate. Excluding the main possibility of chemical phosphate removal, it appeared that phosphate uptake during the anaerobic phase was associated with organisms enriched in the reactor. Moreover, results indicated that intracellular glycogen was used as the main energy source of organics anaerobic absorption and intracellular polymers storage. Measuring and analysing the variation of phosphate, organic substrate, intracellular glycogen and pH in the anaerobic phase, a preliminary explanation was developed that anaerobic uptake of phosphate was the demand of intracellular glycogen degradation, and extracellular phosphate was transported to intracellular by pH gradient-sensitive phosphate carrier protein.


2020 ◽  
Vol 311 ◽  
pp. 123467 ◽  
Author(s):  
Silvio Luiz de Sousa Rollemberg ◽  
Lorayne Queiroz de Oliveira ◽  
Amanda Nascimento de Barros ◽  
Paulo Igor Milen Firmino ◽  
André Bezerra dos Santos

2011 ◽  
Vol 63 (9) ◽  
pp. 1808-1814 ◽  
Author(s):  
M. Figueroa ◽  
A. Val del Río ◽  
J. L. Campos ◽  
A. Mosquera-Corral ◽  
R. Méndez

Aerobic granular sludge grown in a sequential batch reactor was proposed as an alternative to anaerobic processes for organic matter and nitrogen removal from swine slurry. Aerobic granulation was achieved with this wastewater after few days from start-up. On day 140 of operation, the granular properties were: 5 mm of average diameter, SVI of 32 mL (g VSS)−1 and density around 55 g VSS (Lgranule)−1. Organic matter removal efficiencies up to 87% and nitrogen removal efficiencies up to 70% were achieved during the treatment of organic and nitrogen loading rates (OLR and NLR) of 4.4 kg COD m−3 d−1 and of 0.83 kg N m−3 d−1, respectively. However, nitrogen removal processes were negatively affected when applied OLR was 7.0 kg COD m−3 d−1 and NLR was 1.26 kg N m−3 d−1. The operational cycle of the reactor was modified by reducing the volumetric exchange ratio from 50 to 6% in order to be able to treat the raw slurry without dilution.


2017 ◽  
Vol 77 (4) ◽  
pp. 1107-1114 ◽  
Author(s):  
Benjamin J. Thwaites ◽  
Ben van den Akker ◽  
Petra J. Reeve ◽  
Michael D. Short ◽  
Nirmala Dinesh ◽  
...  

Abstract The successful development of aerobic granular sludge (AGS) for secondary wastewater treatment has been linked to a dedicated anaerobic feeding phase, which enables key microbes such as poly-phosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms to gain a competitive advantage over floc-forming organisms. The application of AGS to treat high-saline sewage and its subsequent impacts on microbial ecology, however, are less well understood. In this study, the impacts of high-saline sewage on AGS development, performance and ecology were investigated using molecular microbiology methods. Two feeding strategies were compared at pilot scale: a full (100%) anaerobic feed; and a partial (33%) anaerobic feed. The results were compared to a neighbouring full-scale conventional activated sludge (CAS) system (100% aerobic). We observed that AGS developed under decreased anaerobic contact showed a comparable formation, stability and nitrogen removal performance to the 100% anaerobically fed system. Analysis of the microbial ecology showed that the altered anaerobic contact had minimal effect on the abundances of the functional nitrifying and denitrifying bacteria and Archaea; however, there were notable ecological differences when comparing different sized granules. In contrast to previous work, a large enrichment in PAOs in AGS was not observed in high-saline wastewater, which coincided with poor observed phosphate removal performance. Instead, AGS exhibited a substantial enrichment in sulfide-oxidising bacteria, which was complemented by elemental analysis that identified the presence of elemental sulfur precipitation. The potential role for these organisms in AGS treating high-saline wastewater is discussed.


Sign in / Sign up

Export Citation Format

Share Document