scholarly journals Temporal Monitoring and Predicting of the Abundance of Malaria Vectors Using Time Series Analysis of Remote Sensing Data through Google Earth Engine

Author(s):  
Fahimeh Youssefi ◽  
Mohmmad Javad Valadan Zoej ◽  
Ahmad Ali Hanafi-Bojd ◽  
Alireza Borhani Darian ◽  
Mehdi Khaki ◽  
...  

Abstract Background: In many studies in the field of malaria, environmental factors have been acquired in single-time, multi-time or a short time series using remote sensing and meteorological data. Selecting the best periods of the year to monitor the habitats of Anopheles larvae can be effective in better and faster control of malaria outbreak.Methods: In this article, high-risk times for three regions in Iran, including Qaleh-Ganj, Sarbaz and Bashagard counties with history of malaria prevalence had been estimated. For this purpose, a series of environmental factors affecting the growth and survival of Anopheles had been used over a seven-year period through the GEE. Environmental factors used in this study include NDVI and LST extracted from Landsat-8 satellite images, daily precipitation data from PERSIANN-CDR, soil moisture data from NASA-USDA Enhanced SMAP, ET data from MODIS sensor, and vegetation health indices included TCI and VCI extracted from MODIS sensors. All these parameters were extracted on a monthly average for seven years and, their results were fused at the decision level using majority voting method to estimate high-risk time in a year.Results: The results of this study indicated that there were two high-risk times for all three study areas in a year to increase the abundance of Anopheles mosquitoes. The first peak occurred from late winter to late spring and the second peak from late summer to mid-autumn. If there is a malaria patient in the area, after the end of the Anopheles larvae growth period, the disease will spread throughout the region. Further evaluation of the results against the entomological data available in previous studies showed that the high-risk times predicted in this study were consistent with the increase in the abundance of Anopheles mosquitoes in the study areas. Conclusions: The proposed method is very useful for temporal prediction of the increase of the abundance of Anopheles mosquitoes and also the use of optimal data with the aim of monitoring the exact location of Anopheles habitats. This study extracted high-risk time based on the analysis of the time series of remote sensing data.

Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 100
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Siti Saringatin ◽  
Pramaditya Wicaksono ◽  
Bachtiar Wahyu Mutaqin ◽  
...  

Coastal regions are one of the most vulnerable areas to the effects of global warming, which is accompanied by an increase in mean sea level and changing shoreline configurations. In Indonesia, the socioeconomic importance of coastal regions where the most populated cities are located is high. However, shoreline changes in Indonesia are relatively understudied. In particular, detailed monitoring with remote sensing data is lacking despite the abundance of datasets and the availability of easily accessible cloud computing platforms such as the Google Earth Engine that are able to perform multi-temporal and multi-sensor mapping. Our study aimed to assess shoreline changes in East Java Province Indonesia from 2000 to 2019 using variables derived from a multi-sensor combination of optical remote sensing data (Landsat-7 ETM and Landsat-8 OLI) and radar data (ALOS Palsar and Sentinel-1 data). Random forest and GMO maximum entropy (GMO-Maxent) accuracy was assessed for the classification of land and water, and the land polygons from the best algorithm were used for deriving shorelines. In addition, shoreline changes were quantified using Digital Shoreline Analysis System (DSAS). Our results showed that coastal accretion is more profound than coastal erosion in East Java Province with average rates of change of +4.12 (end point rate, EPR) and +4.26 m/year (weighted linear rate, WLR) from 2000 to 2019. In addition, some parts of the shorelines in the study area experienced massive changes, especially in the deltas of the Bengawan Solo and Brantas/Porong river with rates of change (EPR) between −87.44 to +89.65 and −18.98 to +111.75 m/year, respectively. In the study areas, coastal erosion happened mostly in the mangrove and aquaculture areas, while the accreted areas were used mostly as aquaculture and mangrove areas. The massive shoreline changes in this area require better monitoring to mitigate the potential risks of coastal erosion and to better manage coastal sedimentation.


2021 ◽  
Vol 936 (1) ◽  
pp. 012006
Author(s):  
Z N Ghuvita Hadi ◽  
T Hariyanto ◽  
N Hayati

Abstract Monitoring the concentration of Total Suspended Solid (TSS) is one method to determine water quality, because a high TSS value indicates a high level of pollution. Remote sensing data can be used effectively in generating suspended sediment concentrations. Nowdays, Google Earth Engine platform has provided a large collection of remote sensing data. Therefore, this study uses Google Earth Engine which is processed for free and aims to calculate the TSS value in the Kali Porong area. This research was conducted multitemporal in the last ten years, namely from 2013-2021 using multitemporal satellite imagery landsat-8 and sentinel-2 by applying empirical algorithms for calculating TSS. The results of this study are the value of TSS concentration at each sample point and a multitemporal TSS concentration distribution map. The year 2016, 2017, and 2021, the distribution of TSS concentration values was higher than in other years. At the sample point, the lowest TSS concentration value was 16.55 mg/L in 2013. Meanwhile, the highest TSS concentration value of 266.33 mg/L occurred in 2014 precisely in the Porong River estuary area which is the border area between land and water. the sea so that a lot of TSS material is concentrated in the area due to waves and ocean currents.


Author(s):  
D. C. Pu ◽  
J. Y. Sun ◽  
Q. Ding ◽  
Q. Zheng ◽  
T. T. Li ◽  
...  

Abstract. Urban information extraction from satellite based remote sensing data could provide the basic scientific decision-making data for the construction and management of future cities. In particular, long-term satellite based remote sensing such as Landsat observations provides a rich source of data for urban area mapping. Urban area mapping based on the single-temporal Landsat observations is vulnerable to data quality (such as cloud coverage and stripe), and it is difficult to extract urban areas accurately. The composite of dense time series Landsat observations can significantly reduce the effect of data quality on urban area mapping. Multidimensional array is currently effective theory for geographic big data analysis and management, providing a theoretical basis for the composite of dense time series Landsat observations. Google Earth Engine (GEE) not only provides rich satellite based remote sensing data for the composite of dense time series data, but also has powerful massive data analysis capabilities. In the study, we chose Random Forest (RF) algorithm for the urban area extraction owing to its stable performance, high classification accuracy and feature importance evaluation. In this work, the study area is located in the central part of the city of Beijing, China. Our main data source is all Landsat8 OLI images in Beijing (path/row: 123/32) in 2017.Based on the multidimensional array for geographic big data theory and the GEE cloud computing platform, four commonly used reducer methods are selected to composite the annual dense time series Landsat 8 OLI data. After collecting the training samples, RF algorithm was selected for supervised classification, feature importance evaluation and accuracy verification for urban area mapping. The results showed that 1), compared with the single temporal image of Landsat 8 OLI, the quality of annual composite image was improved obviously, especially for urban extraction in cloudy areas; 2) for the evaluation results of feature importance based on RF algorithm, Coastal, Blue, NIR, SWIR1 and SWIR2 bands were the more important characteristic bands, while the Green and Red bands were comparatively less important; 3) the annual composite images obtained by the ee.Reducer.min, ee.Reducer.max, ee.Reducer.mean and ee.Reducer.median methods were classified and accuracy verification was carried out using the verification points. The overall accuracy of the urban area mapping reached 0.805, 0.820, 0.868 and 0.929, respectively. In summary, the ee.Reducer.median method is a suitable method for annual dense time series Landsat image composite, which could improve the data quality, and ensure the difference of features and the higher accuracy of urban area mapping.


Author(s):  
A. M. Shew ◽  
A. Ghosh

Remote sensing in the optical domain is widely used in agricultural monitoring; however, such initiatives pose a challenge for developing countries due to a lack of high quality in situ information. Our proposed methodology could help developing countries bridge this gap by demonstrating the potential to quantify patterns of dry season rice production in Bangladesh. To analyze approximately 90,000 km2 of cultivated land in Bangladesh at 30 m spatial resolution, we used two decades of remote sensing data from the Landsat archive and Google Earth Engine (GEE), a cloud-based geospatial data analysis platform built on Google infrastructure and capable of processing petabyte-scale remote sensing data. We reconstructed the seasonal patterns of vegetation indices (VIs) for each pixel using a harmonic time series (HTS) model, which minimizes the effects of missing observations and noise. Next, we combined the seasonality information of VIs with our knowledge of rice cultivation systems in Bangladesh to delineate rice areas in the dry season, which are predominantly hybrid and High Yielding Varieties (HYV). Based on historical Landsat imagery, the harmonic time series of vegetation indices (HTS-VIs) model estimated 4.605 million ha, 3.519 million ha, and 4.021 million ha of rice production for Bangladesh in 2005, 2010, and 2015 respectively. Fine spatial scale information on HYV rice over the last 20 years will greatly improve our understanding of double-cropped rice systems, current status of production, and potential for HYV rice adoption in Bangladesh during the dry season.


2021 ◽  
Vol 10 (2) ◽  
pp. 58
Author(s):  
Muhammad Fawad Akbar Khan ◽  
Khan Muhammad ◽  
Shahid Bashir ◽  
Shahab Ud Din ◽  
Muhammad Hanif

Low-resolution Geological Survey of Pakistan (GSP) maps surrounding the region of interest show oolitic and fossiliferous limestone occurrences correspondingly in Samanasuk, Lockhart, and Margalla hill formations in the Hazara division, Pakistan. Machine-learning algorithms (MLAs) have been rarely applied to multispectral remote sensing data for differentiating between limestone formations formed due to different depositional environments, such as oolitic or fossiliferous. Unlike the previous studies that mostly report lithological classification of rock types having different chemical compositions by the MLAs, this paper aimed to investigate MLAs’ potential for mapping subclasses within the same lithology, i.e., limestone. Additionally, selecting appropriate data labels, training algorithms, hyperparameters, and remote sensing data sources were also investigated while applying these MLAs. In this paper, first, oolitic (Samanasuk), fossiliferous (Lockhart and Margalla) limestone-bearing formations along with the adjoining Hazara formation were mapped using random forest (RF), support vector machine (SVM), classification and regression tree (CART), and naïve Bayes (NB) MLAs. The RF algorithm reported the best accuracy of 83.28% and a Kappa coefficient of 0.78. To further improve the targeted allochemical limestone formation map, annotation labels were generated by the fusion of maps obtained from principal component analysis (PCA), decorrelation stretching (DS), X-means clustering applied to ASTER-L1T, Landsat-8, and Sentinel-2 datasets. These labels were used to train and validate SVM, CART, NB, and RF MLAs to obtain a binary classification map of limestone occurrences in the Hazara division, Pakistan using the Google Earth Engine (GEE) platform. The classification of Landsat-8 data by CART reported 99.63% accuracy, with a Kappa coefficient of 0.99, and was in good agreement with the field validation. This binary limestone map was further classified into oolitic (Samanasuk) and fossiliferous (Lockhart and Margalla) formations by all the four MLAs; in this case, RF surpassed all the other algorithms with an improved accuracy of 96.36%. This improvement can be attributed to better annotation, resulting in a binary limestone classification map, which formed a mask for improved classification of oolitic and fossiliferous limestone in the area.


2017 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Clement Kwang ◽  
Edward Matthew Osei Jnr ◽  
Adwoa Sarpong Amoah

Remote sensing data are most often used in water bodies’ extraction studies and the type of remote sensing data used also play a crucial role on the accuracy of the extracted water features. The performance of the proposed water indexes among the various satellite images is not well documented in literature. The proposed water indexes were initially developed with a particular type of data and with advancement and introduction of new satellite images especially Landsat 8 and Sentinel, therefore the need to test the level of performance of these water indexes as new image datasets emerged. Landsat 8 and Sentinel 2A image of part Volta River was used. The water indexes were performed and then ISODATA unsupervised classification was done. The overall accuracy and kappa coefficient values range from 98.0% to 99.8% and 0.94 to 0.98 respectively. Most of water bodies enhancement indexes work better on Sentinel 2A than on Landsat 8. Among the Landsat based water bodies enhancement ISODATA unsupervised classification, the modified normalized water difference index (MNDWI) and normalized water difference index (NDWI) were the best classifier while for Sentinel 2A, the MNDWI and the automatic water extraction index (AWEI_nsh) were the optimal classifier. The least performed classifier for both Landsat 8 and Sentinel 2A was the automatic water extraction index (AWEI_sh). The modified normalized water difference index (MNDWI) has proved to be the universal water bodies enhancement index because of its performance on both the Landsat 8 and Sentinel 2A image.


Sign in / Sign up

Export Citation Format

Share Document