scholarly journals MAPPING URBAN AREAS USING DENSE TIME SERIES OF LANDSAT IMAGES AND GOOGLE EARTH ENGINE

Author(s):  
D. C. Pu ◽  
J. Y. Sun ◽  
Q. Ding ◽  
Q. Zheng ◽  
T. T. Li ◽  
...  

Abstract. Urban information extraction from satellite based remote sensing data could provide the basic scientific decision-making data for the construction and management of future cities. In particular, long-term satellite based remote sensing such as Landsat observations provides a rich source of data for urban area mapping. Urban area mapping based on the single-temporal Landsat observations is vulnerable to data quality (such as cloud coverage and stripe), and it is difficult to extract urban areas accurately. The composite of dense time series Landsat observations can significantly reduce the effect of data quality on urban area mapping. Multidimensional array is currently effective theory for geographic big data analysis and management, providing a theoretical basis for the composite of dense time series Landsat observations. Google Earth Engine (GEE) not only provides rich satellite based remote sensing data for the composite of dense time series data, but also has powerful massive data analysis capabilities. In the study, we chose Random Forest (RF) algorithm for the urban area extraction owing to its stable performance, high classification accuracy and feature importance evaluation. In this work, the study area is located in the central part of the city of Beijing, China. Our main data source is all Landsat8 OLI images in Beijing (path/row: 123/32) in 2017.Based on the multidimensional array for geographic big data theory and the GEE cloud computing platform, four commonly used reducer methods are selected to composite the annual dense time series Landsat 8 OLI data. After collecting the training samples, RF algorithm was selected for supervised classification, feature importance evaluation and accuracy verification for urban area mapping. The results showed that 1), compared with the single temporal image of Landsat 8 OLI, the quality of annual composite image was improved obviously, especially for urban extraction in cloudy areas; 2) for the evaluation results of feature importance based on RF algorithm, Coastal, Blue, NIR, SWIR1 and SWIR2 bands were the more important characteristic bands, while the Green and Red bands were comparatively less important; 3) the annual composite images obtained by the ee.Reducer.min, ee.Reducer.max, ee.Reducer.mean and ee.Reducer.median methods were classified and accuracy verification was carried out using the verification points. The overall accuracy of the urban area mapping reached 0.805, 0.820, 0.868 and 0.929, respectively. In summary, the ee.Reducer.median method is a suitable method for annual dense time series Landsat image composite, which could improve the data quality, and ensure the difference of features and the higher accuracy of urban area mapping.

2021 ◽  
Author(s):  
Fahimeh Youssefi ◽  
Mohmmad Javad Valadan Zoej ◽  
Ahmad Ali Hanafi-Bojd ◽  
Alireza Borhani Darian ◽  
Mehdi Khaki ◽  
...  

Abstract Background: In many studies in the field of malaria, environmental factors have been acquired in single-time, multi-time or a short time series using remote sensing and meteorological data. Selecting the best periods of the year to monitor the habitats of Anopheles larvae can be effective in better and faster control of malaria outbreak.Methods: In this article, high-risk times for three regions in Iran, including Qaleh-Ganj, Sarbaz and Bashagard counties with history of malaria prevalence had been estimated. For this purpose, a series of environmental factors affecting the growth and survival of Anopheles had been used over a seven-year period through the GEE. Environmental factors used in this study include NDVI and LST extracted from Landsat-8 satellite images, daily precipitation data from PERSIANN-CDR, soil moisture data from NASA-USDA Enhanced SMAP, ET data from MODIS sensor, and vegetation health indices included TCI and VCI extracted from MODIS sensors. All these parameters were extracted on a monthly average for seven years and, their results were fused at the decision level using majority voting method to estimate high-risk time in a year.Results: The results of this study indicated that there were two high-risk times for all three study areas in a year to increase the abundance of Anopheles mosquitoes. The first peak occurred from late winter to late spring and the second peak from late summer to mid-autumn. If there is a malaria patient in the area, after the end of the Anopheles larvae growth period, the disease will spread throughout the region. Further evaluation of the results against the entomological data available in previous studies showed that the high-risk times predicted in this study were consistent with the increase in the abundance of Anopheles mosquitoes in the study areas. Conclusions: The proposed method is very useful for temporal prediction of the increase of the abundance of Anopheles mosquitoes and also the use of optimal data with the aim of monitoring the exact location of Anopheles habitats. This study extracted high-risk time based on the analysis of the time series of remote sensing data.


Nativa ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 370 ◽  
Author(s):  
Luís Flávio Pereira ◽  
Cecilia Fátima Carlos Ferreira ◽  
Ricardo Morato Fiúza Guimarães

Pastagens sob práticas de manejo ineficientes tornam-se degradadas, provocando sérios problemas socioambientais e econômicos. Assim, entender a dinâmica dos sistemas pastoris e suas interações com o meio físico torna-se essencial na busca de alternativas sustentáveis para a agropecuária. Estudou-se manejo, dinâmica anual e interações socioambientais em pastagens de uma bacia hidrográfica no bioma Mata Atlântica em Minas Gerais, Brasil, durante o ano hidrológico 2016/2017. Utilizou-se dados de campo, relatos de agricultores e sensoriamento remoto via imagens LANDSAT 8 OLI e Google Earth Pro®. Foi proposto um índice de qualidade para pastagens da região. As pastagens apresentaram, em média, qualidade moderada. Níveis de degradação foram altos, oscilando de forma quadrática (níveis 2, 4, 5 e IDP) e potencial (nível 1) com a precipitação (p < 0,01), o que sugere que a irrigação possa ser prática eficiente no controle da degradação. Durante o ano, pelo menos 51,27% das pastagens apresentaram algum sinal de degradação, atingindo-se a marca de 91,32%, no período seco. Os resultados sugerem pior qualidade e maiores níveis de degradação de pastagens em terras elevadas e declivosas. Devido às condições socioambientais locais, indica-se o uso de sistemas silvipastoris agroecológicos no manejo das pastagens.Palavras-chave: uso da terra, sensoriamento remoto, relação solo paisagem, Zona da Mata, índice de qualidade. MANAGEMENT, QUALITY AND DEGRADATION DYNAMICS OF PASTURES IN ATLANTIC FOREST BIOME, MINAS GERAIS – BRASIL ABSTRACT:Pastures under inefficient management practices get degraded, leading to serious socioeconomic and environmental issues. That being said, understanding the dynamics of such systems and their interaction with the environment is essential when it comes to looking towards sustainable alternatives for livestock activities. The management, annual dynamics and socio-environmental interactions in pastures in an hydrographic basin located in Atlantic Forest biome, Minas Gerais, Brasil, were studied during the hydrological year of 2016/2017. Field data and farmers reports were utilized, such as remote sensing via images from LANDSAT 8 OLI and Google Earth Pro®. A quality index was proposed for the pastures, which usually presented medium quality. Degradation levels were high, oscillating in a quadratic basis (levels 2, 4, 5 and IDP) and potential (level 1) with precipitation (p < 0,01), which suggests that irrigation might be an efficient practice when it comes to degradation control. During the year, at least 51,27% of pastures have presented signs of degradation, achieving 91,32% in dry periods. The results suggest less quality and bigger degradation levels in pastures located in high and steep areas. Considering the local environmental conditions, agroecological silvopasture systems are recommended regarding the pastures management.Keywords: land use, remote sensing, soil/landscape relationships, Zona da Mata, quality index.


2021 ◽  
Author(s):  
Amine Jellouli ◽  
Abderrazak El Harti ◽  
Zakaria Adiri ◽  
Mohcine Chakouri ◽  
Jaouad El Hachimi ◽  
...  

&lt;p&gt;Lineament mapping is an important step for lithological and hydrothermal alterations mapping. It is considered as an efficient research task which can be a part of structural investigation and mineral ore deposits identification. The availability of optical as well as radar remote sensing data, such as Landsat 8 OLI, Terra ASTER and ALOS PALSAR data, allows lineaments mapping at regional and national scale. The accuracy of the obtained results depends strongly on the spatial and spectral resolution of the data. The aim of this study was to compare Landsat 8 OLI, Terra ASTER, and radar ALOS PALSAR satellite data for automatic and manual lineaments extraction. The module Line of PCI Geomatica software was applied on PC1 OLI, PC3 ASTER and HH and HV polarization images to automatically extract geological lineaments. However, the manual extraction was achieved using the RGB color composite of the directional filtered images N - S (0&amp;#176;), NE - SW (45&amp;#176;) and E - W (90&amp;#176;) of the OLI panchromatic band 8. The obtained lineaments from automatic and manual extraction were compared against the faults and photo-geological lineaments digitized from the existing geological map of the study area. The extracted lineaments from PC1 OLI and ALOS PALSAR polarizations images showed the best correlation with faults and photo-geological lineaments. The results indicate that the lineaments extracted from HH and HV polarizations of ALOS PALSAR radar data used in this study, with 1499 and 1507 extracted lineaments, were more efficient for structural lineament mapping, as well as the PC1 OLI image with 1057 lineaments.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords&lt;/strong&gt; Remote Sensing . OLI. ALOS PALSAR . ASTER . Kerdous Inlier . Anti Atlas&lt;/p&gt;


2020 ◽  
Vol 12 (4) ◽  
pp. 688 ◽  
Author(s):  
Jacky Lee ◽  
Jeffrey A. Cardille ◽  
Michael T. Coe

Landsat 5 has produced imagery for decades that can now be viewed and manipulated in Google Earth Engine, but a general, automated way of producing a coherent time series from these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution for the year 2009, combining it with Landsat time series imagery to create a land cover time series for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in this area, much of the landscape remained the same: we asked whether we could harness those similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U successfully combined the labels from the coarser classification with the spatial detail of Landsat. The result was an accurate fine-scale time series that quantified the expansion of deforestation in the study area, which more than doubled in size during this time. Earth Engine directly enabled the fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid prototyping, and overall processing speed permitted the development and testing of this study. Many would-be users of remote sensing data are currently limited by the need to have highly specialized knowledge to create classifications of older data. The approach shown here presents fewer obstacles to participation and allows a wide audience to create their own time series of past decades. By leveraging both the varied data catalog and the processing speed of Earth Engine, this research can contribute to the rapid advances underway in multi-temporal image classification techniques. Given Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly growing community of researchers and managers who need to understand the long-term dynamics of terrestrial systems.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 139 ◽  
Author(s):  
Yingying Yang ◽  
Taixia Wu ◽  
Shudong Wang ◽  
Jing Li ◽  
Farhan Muhanmmad

Evergreen trees play a significant role in urban ecological services, such as air purification, carbon and oxygen balance, and temperature and moisture regulation. Remote sensing represents an essential technology for obtaining spatiotemporal distribution data for evergreen trees in cities. However, highly developed subtropical cities, such as Nanjing, China, have serious land fragmentation problems, which greatly increase the difficulty of extracting evergreen trees information and reduce the extraction precision of remote-sensing methods. This paper introduces a normalized difference vegetation index coefficient of variation (NDVI-CV) method to extract evergreen trees from remote-sensing data by combining the annual minimum normalized difference vegetation index (NDVIann-min) with the CV of a Landsat 8 time-series NDVI. To obtain an intra-annual, high-resolution time-series dataset, Landsat 8 cloud-free and partially cloud-free images over a three-year period were collected and reconstructed for the study area. Considering that the characteristic growth of evergreen trees remained nearly unchanged during the phenology cycle, NDVIann-min is the optimal phenological node to separate this information from that of other vegetation types. Furthermore, the CV of time-series NDVI considers all of the phenologically critical phases; therefore, the NDVI-CV method had higher extraction accuracy. As such, the approach presented herein represents a more practical and promising method based on reasonable NDVIann-min and CV thresholds to obtain spatial distribution data for evergreen trees. The experimental verification results indicated a comparable performance since the extraction accuracy of the model was over 85%, which met the classification accuracy requirements. In a cross-validation comparison with other evergreen trees’ extraction methods, the NDVI-CV method showed higher sensitivity and stability.


2022 ◽  
Vol 88 (1) ◽  
pp. 47-53
Author(s):  
Muhammad Nasar Ahmad ◽  
Zhenfeng Shao ◽  
Orhan Altan

This study comprises the identification of the locust outbreak that happened in February 2020. It is not possible to conduct ground-based surveys to monitor such huge disasters in a timely and adequate manner. Therefore, we used a combination of automatic and manual remote sensing data processing techniques to find out the aftereffects of locust attack effectively. We processed MODIS -normalized difference vegetation index (NDVI ) manually on ENVI and Landsat 8 NDVI using the Google Earth Engine (GEE ) cloud computing platform. We found from the results that, (a) NDVI computation on GEE is more effective, prompt, and reliable compared with the results of manual NDVI computations; (b) there is a high effect of locust disasters in the northern part of Sindh, Thul, Ghari Khairo, Garhi Yaseen, Jacobabad, and Ubauro, which are more vulnerable; and (c) NDVI value suddenly decreased to 0.68 from 0.92 in 2020 using Landsat NDVI and from 0.81 to 0.65 using MODIS satellite imagery. Results clearly indicate an abrupt decrease in vegetation in 2020 due to a locust disaster. That is a big threat to crop yield and food production because it provides a major portion of food chain and gross domestic product for Sindh, Pakistan.


Sign in / Sign up

Export Citation Format

Share Document