Chemical and Behavioural Strategies along The Spectrum of Host Specificity in Ant-Associated Silverfish

Author(s):  
Thomas Parmentier ◽  
Miquel Gaju-Ricart ◽  
Tom Wenseleers ◽  
Rafael Molero-Baltanás

Abstract Background Host range is a fundamental trait to understand the ecological and evolutionary dynamics of symbionts. Increasing host specificity is expected to be accompanied with specialization in different symbiont traits. We tested this specificity-specialization association in a large group of 16 ant-associated silverfish species by linking their level of host specificity with their degree of behavioural integration into the colony and their accuracy of chemically deceiving the host’s recognition system, i.e. the cuticular hydrocarbon (CHC) profile. Results As expected, facultative associates and host generalists (targeting multiple unrelated ants) tend to avoid the host, whereas host-specialists (typically restricted to Messor ants) were bolder, approached the host and allowed inspection. Generalists and host specialists regularly followed a host worker, unlike the other silverfish. Host aggression was extremely high toward non-ant-associated silverfish and modest to low in ant-associated groups. Surprisingly, the degree of chemical deception was not linked with host specificity as most silverfish, including facultative ant associates, imitated the host’s CHC profile. Messor specialists retained the same CHC profile as the host after moulting, in contrast to a host generalist, suggesting an active production of the cues (chemical mimicry). Host generalist and facultative associates flexibly copied the highly different CHC profiles of alternative host species, pointing at passive acquisition (chemical camouflage) of the host’s odour. Conclusions Overall, we found that behaviour that seems to facilitate the integration in the host colony was more pronounced in host specialist silverfish. Chemical deception, however, was employed by all ant-associated species, irrespective of their degree of host specificity.

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 654
Author(s):  
Luca Pietro Casacci ◽  
Francesca Barbero ◽  
Piotr Ślipiński ◽  
Magdalena Witek

Social parasitism represents a particular type of agonistic interaction in which a parasite exploits an entire society instead of a single organism. One fascinating form of social parasitism in ants is the “inquilinism”, in which a typically worker-less parasitic queen coexists with the resident queen in the host colony and produces sexual offspring. To bypass the recognition system of host colonies, inquilines have evolved a repertoire of deceiving strategies. We tested the level of integration of the inquiline Myrmica karavajevi within the host colonies of M. scabrinodis and we investigated the mechanisms of chemical and vibroacoustic deception used by the parasite. M. karavajevi is integrated into the ant colony to such an extent that, in rescue experiments, the parasite pupae were saved prior to the host’s brood. M. karavajevi gynes perfectly imitated the cuticular hydrocarbon profiles of M. scabrinodis queens and the parasite vibroacoustic signals resembled those emitted by the host queens eliciting the same levels of attention in the host workers during playback experiments. Our results suggest that M. karavajevi has evolved ultimate deception strategies to reach the highest social status in the colony hierarchy, encouraging the use of a combined molecular and behavioural approach when studying host–parasite interactions.


2000 ◽  
Vol 132 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Wolfgang Völkl ◽  
Manfred Mackauer

AbstractWe examined oviposition behaviour in 49 species representing 19 genera of Aphidiinae. All species are solitary parasitoids of aphids (Hemiptera: Aphidoidea). Six general types are described that differ in oviposition time, behaviour, and morphology. The Ephedrini have the least specialized oviposition behaviour within the subfamily, with Praini and Aphidiini displaying various adaptations for host capture and oviposition. Use of the forelegs to grasp and orient aphids for oviposition has arisen twice, in Praini and, independently, in the genus Monoctonus Haliday (Aphidiini: Monoctonina). Morphological modifications of the terminal abdominal segments for host capture are found in Trioxina and in several species of Pauesia Quilis (Aphidiina). A “quick” sting is characteristic of species in the genus Aphidius Nees and related genera. The greatest degree of behavioural diversification occurred among Pauesia species, including cryptic behaviour, ant mimicry, and “sneak” oviposition. Acquired chemical camouflage and mimicry of the host’s cuticular hydrocarbon pattern to avoid detection by guarding ants is found in Aclitus obscuripennis Foerster, the genus Paralipsis Foerster, and the two closely related genera Adialytus Foerster and Lysiphlebus Foerster. It is suggested that the main driving forces in the evolution of parasitoid oviposition behaviour were aphid defensive behaviour and avoidance of aggression by trophobiotic ants. The results are compared with phylogenetic relationships inferred from morphological and molecular data.


Insects ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Shahar Dubiner ◽  
Nitzan Cohen ◽  
Mika Volov ◽  
Abraham Hefetz ◽  
Rya Seltzer ◽  
...  

The main challenge facing a parasite of social insects lies in deceiving its host’s detection and defense systems in order to enter and survive within the host colony. Sphecophaga orientalis is an ichneumonid wasp that parasitizes the pupae of the Oriental hornet Vespa orientalis. In Israel’s Mediterranean region, this parasitoid infects on average 23.48% (8–56%) of the host pupal cells. Observation of colonies brought to the laboratory revealed that the parasite moves around within the colony without being aggressed by the host workers. To assess how the parasite evades host detection and defense, we compared the cuticular hydrocarbon (CHC) profiles of both species. There was little similarity between the parasite and the host workers’ CHC, refuting the hypothesis of chemical mimicry. The parasite’s CHCs were dominated by linear alkanes and alkenes with negligible amounts of branched alkanes, while the host workers’ CHCs were rich in branched alkanes and with little or no alkenes. Moreover, the parasite cuticular wash was markedly rich in oleic acid, previously reported as a cue eliciting necrophoric behavior. Since nests of Oriental hornets are typified by large amounts of prey residues, we suggest that, due to its unfamiliar CHCs and the abundance of oleic acid, the parasite is considered as refuse by the host. We also detected rose oxide in the parasitoid head extracts. Rose oxide is a known insect repellent, and can be used to repel and mitigate aggression in workers. These two factors, in concert, are believed to aid the parasite to evade host aggression.


2021 ◽  
Author(s):  
Magdalena Kujawska ◽  
Aura Raulo ◽  
Laima Baltrunaite ◽  
Sarah CL Knowles ◽  
Lindsay J Hall

Members of the gut microbiota genus Bifidobacterium are widely distributed human and animal symbionts believed to exert beneficial effects on their hosts. However, in-depth genomic analyses of animal-associated species and strains are somewhat lacking, particularly in wild animal populations. Here, to examine patterns of host specificity and carbohydrate metabolism capacity, we sequenced whole genomes of Bifidobacterium isolated from wild-caught small mammals from two European countries (UK and Lithuania). Members of B. castoris, B. animalis and B. pseudolongum were detected in wild mice (Apodemus sylvaticus, A. agrarius and A. flavicollis), but not voles or shrews. B. castoris constituted the most commonly recovered Bifidobacterium (78% of all isolates), with the majority of strains only detected in a single population, although populations frequently harboured multiple co-circulating strains. Phylogenetic analysis revealed that the mouse-associated B. castoris clades were not specific to a particular location or host species, and their distribution across the host phylogeny was consistent with regular host shifts rather than host-microbe codiversification. Functional analysis suggested that mouse-derived B. castoris strains encoded an extensive arsenal of carbohydrate-active enzymes, including putative novel glycosyl hydrolases such as chitosanases that may act on chitin-derived substrates such as mushrooms or insects, along with genes encoding putative exopolysaccharides, some of which may have been acquired via horizontal gene transfer. Overall, these results provide a rare genome-level analysis of host specificity and genomic capacity among important gut symbionts of wild animals, and reveal that Bifidobacterium has a labile relationship with its host over evolutionary time scale.


2019 ◽  
pp. 1-35
Author(s):  
Cessa Rauch ◽  
Bert W. Hoeksema ◽  
Bambang Hermanto ◽  
Charles H.J.M. Fransen

Most marine palaemonid shrimp species live in symbiosis with invertebrates of various phyla. These associations range from weak epibiosis to obligatory endosymbiosis and from restricted commensalism to semi-parasitism. On coral reefs, such symbiotic shrimps can contribute to the associated biodiversity of reef corals. Among the host taxa, mushroom corals (Cnidaria: Anthozoa: Fungiidae) are known to harbour various groups of symbionts, including shrimps. Some but not all of these associated species are host-specific. Because data on the host specificity of shrimps on mushroom corals are scarce, shrimp species of the genus Periclimenes were collected from mushroom corals during fieldwork in Lembeh Strait, North Sulawesi, Indonesia. Using molecular (COI barcoding gene) and morphological methods, three species of Periclimenes were identified: P. diversipes, P. watamuae and a species new to science, P. subcorallum sp. nov., described herein. Their host specificity was variable, with eight, three and two fungiid host records, respectively. It is concluded that shrimp species of the genus Periclimenes show much overlap in their host choice and that particular morphological traits in the host species appear to play a more important role than phylogenetic affinities within the host group.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Alain Lenoir ◽  
Quentin Chalon ◽  
Ana Carvajal ◽  
Camille Ruel ◽  
Ángel Barroso ◽  
...  

Social insect nests provide a safe and favourable shelter to many guests and parasites. InAphaenogaster senilisnests many guests are tolerated. Among them we studied the chemical integration of two myrmecophile beetles,Sternocoelis hispanus(Coleoptera: Histeridae) andChitosa nigrita(Coleoptera: Staphylinidae), and a silverfish. Silverfishes bear low quantities of the host hydrocarbons (chemical insignificance), acquired probably passively, and they do not match the colony odour. Both beetle species use chemical mimicry to be accepted; they have the same specific cuticular hydrocarbon profile as their host. They also match the ant colony odour, but they keep some specificity and can be recognised by the ants as a different element.Sternocoelisare always adopted in other conspecific colonies ofA. seniliswith different delays. They are adopted in the twin speciesA. ibericabut never inA. simonelliiorA. subterranea. They are readopted easily into their mother colony after an isolation of different durations until one month. After isolation they keep their hydrocarbons quantity, showing that they are able to synthesize them. Nevertheless, their profile diverges from the host colony, indicating that they adjust it in contact with the hosts. This had never been demonstrated before in myrmecophile beetles. We suggest that the chemical mimicry ofSternocoelisis the result of a coevolution withA. seniliswith a possible cleaning symbiosis.


Sign in / Sign up

Export Citation Format

Share Document