scholarly journals Investigation on the Effect of Dynamic Fracture Toughness to Zirconia Ceramic Grinding Performance with Different Grain Sizes

Author(s):  
Can Yan ◽  
Zhaohui Deng ◽  
Tao Xia ◽  
Wei Liu ◽  
Hua Zhang

Abstract To reveal the material removal mechanism of zirconia ceramics, an improved prediction models of the critical grinding force and maximum subsurface damage depth models are developed based on the dynamic fracture toughness. The effects of three different grain sizes on the material removal mechanism during brittle- ductile transition process of zirconia ceramics is analyzed through grinding experiments. And the influence of grain size on grinding force, workpiece surface roughness, surface fragmentation rate and subsurface damage depth in grinding are discussed. The results of the experiment results indicated that the value of dynamic fracture toughness tends to decrease with an increase in equivalent grinding thickness, and the ductile removal range of zirconia ceramics expands for the reason that the critical grinding force considering dynamic fracture toughness is higher than the static grinding force considering static fracture toughness, and the maximum subsurface damage depth is closer to actual maximum subsurface damage depth. Besides the smaller the grain size of zirconia ceramics, the higher the surface quality of grinding.

2009 ◽  
Vol 15 (6) ◽  
pp. 1017-1026 ◽  
Author(s):  
Govindaraj Magudeeswaran ◽  
Visvalingam Balasubramanian ◽  
S. Sathyanarayanan ◽  
Gankidi Madhusudhan Reddy ◽  
A. Moitra ◽  
...  

2006 ◽  
Vol 304-305 ◽  
pp. 276-280 ◽  
Author(s):  
Y.H. Ren ◽  
Zhi Xiong Zhou ◽  
Zhao Hui Deng

Surface microgrinding of the nanostructured WC/12Co coatings have been undertaken with diamond wheels under various conditions. Nondestructive and destructive approaches were utilized to assess damage in ground nanostructured coatings. Different surface and subsurface configurations were observed by scanning electron microscopy. This paper investigates the effects of microgrinding conditions on damage formation in the surface and subsurface layers of the ground nanostructured WC/12Co coatings. And the material-removal mechanism has been discussed.


1997 ◽  
Vol 57 (4) ◽  
pp. 459-460
Author(s):  
H. Wada ◽  
M. Seika ◽  
T.C. Kennedy ◽  
C.A. Calder ◽  
K. Murase

2021 ◽  
Vol 2021 (9) ◽  
pp. 1051-1059
Author(s):  
L. R. Botvina ◽  
M. R. Tyutin ◽  
Yu. S. Perminova ◽  
A. V. Utkin

Sign in / Sign up

Export Citation Format

Share Document