scholarly journals High-Performance 3D Semiconductor-Based Heterostructure Photocatalyst in Sustained Control of Harmful Gas-Phase Pollutants Under Visible-Light Illumination

Author(s):  
Dong-Eun Lee ◽  
Mi Hyang Bae ◽  
Wan Jo

Abstract Herein, a highly efficient three-dimensional (3D) semiconductor-based heterostructure photocatalyst (i.e., WO3–g-C3N4 monolithic architecture; WOCNM) was developed by immobilizing a WO3–g-C3N4 heterostructure powder on a melamine foam (MF) framework. Subsequently, the sustained control of two harmful model gas-phase pollutants (i.e., n-butanol and o-xylene) over WOCNM and selected monolithic counterparts (i.e., MF-supported WO3 monolith and MF-supported g-C3N4 monolith) was investigated under visible-light irradiation. WOCNM exhibited higher photocatalytic capabilities in the sustained control of the two model pollutants than those of individual WO3 and g-C3N4 monoliths because the WO3–g-C3N4 heterojunction enhanced its charge-separation ability. Notably, WOCNM exhibited highly efficient photocatalytic capabilities in the sustained control of n-butanol (up to 97%) and o-xylene (up to 86%). Moreover, no noticeable changes were observed in the WOCNM photocatalytic capability after the final run of successive applications. The fresh and successively used WOCNMs were nearly identical, and the photocatalyst powder was not observed in the reaction chamber after its successive application. As a result, WOCNM was a highly efficient and stable 3D heterostructure photocatalyst for the sustained control of gas-phase n-butanol and o-xylene, without significant catalyst powder loss. Promisingly, this study will expedite the future development of 3D photocatalysts for the sustained control of harmful gas-phase pollutants.

2013 ◽  
Vol 25 (10) ◽  
pp. 2138-2149 ◽  
Author(s):  
Zhenxuan Zhao ◽  
Hongxing Dai ◽  
Jiguang Deng ◽  
Yuxi Liu ◽  
Yuan Wang ◽  
...  

2020 ◽  
Vol 7 (12) ◽  
pp. 2343-2351
Author(s):  
Ran Wang ◽  
Guoan Lin ◽  
Xiaoxiang Xu

La/Zr co-doping preserves visible light absorption of SrTaO2N, prohibits the formation of defects, improves surface hydrophilicity and charge separation conditions, all of which contribute to an enhanced photocatalytic activity for water reduction.


RSC Advances ◽  
2014 ◽  
Vol 4 (57) ◽  
pp. 30090-30099 ◽  
Author(s):  
Wenshu Tang ◽  
Yu Su ◽  
Xiaoxin Wang ◽  
Qi Li ◽  
Shian Gao ◽  
...  

A novel superparamagnetic Ag@silver-based salt photocatalyst was created with highly efficient visible light photocatalytic performance and easy magnetic separation.


2020 ◽  
Vol 12 (7) ◽  
pp. 874-884
Author(s):  
Maha Alhaddad

In this investigation, various proportions of Pt@BaZrO3 (at 1∼4 wt.%) accommodating 2.0 wt% Pt were adopted to establish Pt@BaZrO3/g-C3N4 nanocomposites of improved photocatalytic performance. H2PtCl6 nanoparticles as well as mesoporous BaZrO3 and g-C3N4 were utilized to develop the prescribed nanocomposites via sonication-mixture routine. The photocatalytic achievement for the upgraded Pt@BaZrO3/g-C3N4 nanocomposites beneath visible light irradiation were tested by examining ciprofloxacin (CIP) degradation. Enhanced charge transfer and retarded charges’ recombination were established amid Pt, BaZrO3 NPs and g-C3N4 nanosheets in the developed heterojunctions. The proportion (wt.%) of Pt@BaZrO3 was found to be an essential parameter in governing the photocatalytic efficacy of the promoted Pt@BaZrO3/g-C3N4 nanocomposites. Moreover, complete photocatalytic decomposition of CIP was established over Pt@BaZrO3/g-C3N4 nanocomposite, accommodating 3 wt.% Pt@BaZrO3 NPs. Such superior performance was correlated to the great ability of the Pt@BaZrO3/g-C3N4 to absorb visible light in addition to the prolonged charge separation amid the photo-induced charge carriers.


2020 ◽  
Vol 8 (35) ◽  
pp. 18292-18301
Author(s):  
Ge Shu ◽  
Ye Wang ◽  
Yuda Li ◽  
Song Zhang ◽  
Jia-Xing Jiang ◽  
...  

PDBTSO@TiO2-10 exhibited an extremely high HER of 51.5 mmol h−1 g−1 under visible light illumination.


2010 ◽  
Vol 44 (12) ◽  
pp. 4741-4746 ◽  
Author(s):  
Zhonghai Zhang ◽  
Md. Faruk Hossain ◽  
Takayuki Miyazaki ◽  
Takakazu Takahashi

Sign in / Sign up

Export Citation Format

Share Document