scholarly journals Mechanism of Excessive Nitrogen Fertilization Aggravates the Damage of Cacopsylla Chinensis to Pear

Author(s):  
Zifang Qin ◽  
Yang Ge ◽  
Wantong Jia ◽  
Liu Zhang ◽  
Mingyue Feng ◽  
...  

Abstract Cacopsylla chinensis (Hemiptera: Psyllidae) is one of the most important pests on pear trees. Although nitrogen fertilization is known to often benefit the performance of many herbivores including psyllids, physiochemical and molecular mechanisms of how psyllids respond to excessive nitrogen application remain unclear. Study showed that nitrogen fertilizer concentrations significantly impacted phenolic acids compositions in pear leaves, there was an upward trend in ferulic acid concentration when increasing nitrogen fertilizers. The increased ferulic acid concentration accelerated the C. chinensis development. Moreover, high nitrogen fertilization also caused a significant increase in psyllid honeydew secretion and several amino acids concentrations in honeydew. The increased amino-acid content in pear leaves under high nitrogen fertilization improved the feed intakes of psyllid, however decreased more significantly the expression levels of several C. chinensis genes in amino-acid synthesis pathways. The mechanism of excessive nitrogen fertilization aggravating the damage of C. chinensis to pear trees was defined preliminarily.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chen Zhao ◽  
Guanchu Ma ◽  
Lin Zhou ◽  
Song Zhang ◽  
Le Su ◽  
...  

Abstract Background Welsh onion constitutes an important crop due to its benefits in traditional medicine. Nitrogen is an important nutrient for plant growth and yield; however, little is known about its influence on the mechanisms of Welsh onion regulation genes. In this study, we introduced a gene expression and amino acid analysis of Welsh onion treated with different concentrations of nitrogen (N0, N1, and N2 at 0 kg/ha, 130 kg/ha, and 260 kg/ha, respectively). Results Approximately 1,665 genes were differentially regulated with different concentrations of nitrogen. Gene ontology enrichment analysis revealed that the genes involved in metabolic processes, protein biosynthesis, and transportation of amino acids were highly represented. KEGG analysis indicated that the pathways were related to amino acid metabolism, cysteine, beta-alanine, arginine, proline, and glutathione. Differential gene expression in response to varying nitrogen concentrations resulted in different amino acid content. A close relationship between gene expression and the content of amino acids was observed. Conclusions This work examined the effects of nitrogen on gene expression and amino acid synthesis and provides important evidence on the efficient use of nitrogen in Welsh onion.


Wine Studies ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Javier Portu ◽  
Rosa López ◽  
Isabel López-Alfaro ◽  
Lucía González-Arenzana ◽  
Pilar Santamaría ◽  
...  

Nitrogen is an important element for grapevine and winemaking which affects the development of the plant and yeast, and therefore it is important for wine quality. The aim of this work was to study the influence of foliar application to vineyard of proline, phenylalanine and urea and two commercial nitrogen fertilizers, without and with amino acids in their formulation, on the wine amino acid content and their consumption during the alcoholic fermentation. The results showed that these treatments did not affect the amino acid composition in wines. The differences observed for certain amino acids were so small that the concentration of total amino acids was not significantly different among wines. Moreover, it was observed that the higher the content of amino acids in the medium, the greater their consumption during the alcoholic fermentation.


2018 ◽  
Vol 143 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Jinyu Wang ◽  
Bo Yuan ◽  
Yi Xu ◽  
Bingru Huang

Amino acid and protein metabolism are interrelated and both play important roles in plant adaptation to heat stress. The objective of this study was to identify amino acids and soluble proteins associated with genetic variation in heat tolerance of hard fescue (Festuca trachyphylla). According to a previous screening experiment, the hard fescue cultivars Reliant IV and Predator were selected as heat-tolerant and heat-sensitive cultivars, respectively. Plants of these two hard fescue cultivars were exposed to heat stress at 38/33 °C (day/night) or optimal temperature at 21/18 °C in growth chambers. Each cultivar had four replications under each temperature, and the experimental design was a split-plot design, temperature as the main plots and cultivars as the subplots. Under heat stress, ‘Reliant IV’ exhibited higher turf quality (TQ) and greater membrane stability than ‘Predator’. In response to heat stress, total amino acid content increased, whereas total soluble protein content decreased in both cultivars. The greater accumulation of amino acids in ‘Reliant IV’ was contributed by the greater increase of proteins involved in the glycolysis and the tricarboxylic acid (TCA) cycle that provided carbon skeleton for amino acid synthesis. ‘Reliant IV’ leaves exhibited greater extent of increases in the content of six individual amino acids (histidine, glutamine, proline, threonine, aspartate, and tryptophan) than ‘Predator’ under heat stress. Several soluble proteins were upregulated in response to heat stress, to a greater extent in ‘Reliant IV’ than ‘Predator’, including the proteins involved in photosynthesis, protein folding, redox hemostasis, stress signaling, stress defense, cell organization, and metabolism. These differentially accumulated free amino acids and soluble proteins could be associated with the genetic variation in heat tolerance of hard fescue.


2020 ◽  
Author(s):  
Xiaolei Wu ◽  
Qiuying Jia ◽  
Shengxin Ji ◽  
Binbin Gong ◽  
Jingrui Li ◽  
...  

Abstract Background: Salt stress is a serious abiotic stress that caused crop growth inhibition and yield decline. Previous studies have reported on the the synthesis of gamma-aminobutyric acid (GABA) and its relationship with plant resistance under various abiotic stress. However, the relationship between exogenous GABA alleviating plant salt stress damage and ion flux, amino acid synthesis, and key enzyme expression remains largely unclear. We investigated plant growth, Na+ transportation and accumulation, reactive oxygen species (ROS) metabolism and evaluated the effect of GABA on amino acids especially SlGADs gene expression and the endogenous GABA content of tomato (Solanum lycopersicum L.) seedlings treated with or without 5 mmol·L-1 GABA under 175 mmol·L-1 NaCl stress. Results: Exogenous application of GABA significantly reduced the salt damage index and increased plant height, chlorophyll content and the dry and fresh weights of tomato plants exposed to NaCl stress. GABA significantly reduced Na+ accumulation in leaves and roots by preventing Na+ influx in roots and transportation to leaves. The transcriptional expression of SlGAD1-3 genes were induced by NaCl stress especially with GABA application. Among them, SlGAD1 expression was the most sensitive and contributed the most to the increase in glutamic acid decarboxylase (GAD) activity induced by NaCl and GABA application; Exogenous GABA increased GAD activity and amino acid contents in tomato leaves compared with the levels under NaCl stress alone, especially the levels of endogenous GABA, proline, glutamate and eight other amino acids. These results indicated that SlGADs transcriptional expression played an important role in tomato plant resistance to NaCl stress with GABA application by enhancing GAD activity and amino acid content. GABA significantly alleviated the active oxygen-related injury of leaves under NaCl stress by increasing the activities of antioxidant enzymes and decreasing the contents of active oxygen species and malondialdehyde.Conclusion: Exogenous GABA had a positive effect on the resistance of tomato seedlings to salt stress, which was closely associated with reducing Na+ flux from root to leaves, increasing amino acid content and strengthening antioxidant metabolism. Endogenous GABA content was induced by salt and exogenous GABA at both the transcriptional and metabolic levels.


2001 ◽  
Vol 47 (5-6) ◽  
pp. 381-388
Author(s):  
Katalin Berecz ◽  
István Ragasits ◽  
Sándor Hoffmann

Sign in / Sign up

Export Citation Format

Share Document