scholarly journals Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells

Author(s):  
Yanan Shi ◽  
Yilin Chang ◽  
Kun Lu ◽  
Zhihao Chen ◽  
Jianqi Zhang ◽  
...  

Abstract Minimizing the energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells (OSCs). Interestingly, electron-vibration coupling (namely reorganization energy) plays a crucial role in the photo-electric conversion processes. However, a molecular understanding of the relationship between the reorganization energy and the energy loss has rarely been studied. Here, two new acceptors Qx-1 and Qx-2 with quinoxaline (Qx)-containing fused core were designed and synthesized. The results indicate that the reorganization energies of these two acceptors during the photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport and reducing the energy loss originating from exciton dissociation and non-radiative recombination. As a result, an outstanding power conversion efficiency (PCE) of 18.2% with high Voc above 0.93 V in the PM6:Qx-2 blend, accompanying a significantly reduced energy loss of 0.48 eV. To the best of our knowledge, the obtained energy loss is the smallest for the binary OSCs with PCEs over 16% reported to date. This work underlines the importance of the reorganization energy in achieving small energy loss in organic active materials and paves a new way to obtain high-performance OSCs.

2021 ◽  
pp. 129768
Author(s):  
Dou Luo ◽  
Xue Lai ◽  
Nan Zheng ◽  
Chenghao Duan ◽  
Zhaojin Wang ◽  
...  

2020 ◽  
Vol 4 (12) ◽  
pp. 6203-6211
Author(s):  
Yu Chen ◽  
Rui Cao ◽  
Hui Liu ◽  
M. L. Keshtov ◽  
Emmanuel N. Koukaras ◽  
...  

In order to increase the power conversion efficiency (PCE) of organic solar cells, developing high-performance non-fullerene small molecule acceptors is important for efficient charge generation and small energy loss.


2020 ◽  
Vol 8 (48) ◽  
pp. 17429-17439
Author(s):  
Luye Cao ◽  
Xiaoyang Du ◽  
Hui Lin ◽  
Caijun Zheng ◽  
Zhenhua Chen ◽  
...  

The addition of DF materials into ternary OSCs offers possibilities for prolonging the exciton lifetime and diffusion length.


2017 ◽  
Vol 5 (32) ◽  
pp. 16681-16688 ◽  
Author(s):  
Jun-Mo Park ◽  
Dong Won Kim ◽  
Hae Yeon Chung ◽  
Ji Eon Kwon ◽  
Seung Hwa Hong ◽  
...  

We report a new β-dicyanodistyrylbenzene (β-DCS)-based polymer (PBDCS), which enables efficient fullerene and non-fullerene organic solar cells with low Eloss and high EQE.


Solar RRL ◽  
2021 ◽  
pp. 2100806
Author(s):  
Miao Li ◽  
Yuanyuan Zhou ◽  
Ming Zhang ◽  
Yahui Liu ◽  
Zaifei Ma ◽  
...  

Author(s):  
Malik Muhammad Asif Iqbal ◽  
Muhammad Mehboob ◽  
Dr. Riaz Hussain ◽  
Talha Hassan ◽  
Muhammad Ramzan Saeed Ashraf Janjua

The introduction of a bridge element to covalently ring-lock the neighboring aryl or heteroaryl groups connected by a single bond has led to a variety of fascinating multifused ladder-type structures. Here, we have designed a new series of 2H-pyran containing tetracyclic dithienocyclopentapyran compounds (MMA1 to MMA3). Long conjugation at end-capped of designed systems enhances the power conversion efficiencies of non-fullerene-containing organic solar cells. Different geometric parameters of designed systems have been examined through density functional theory and time-dependent density function theory. Designed molecules expressed high absorption maxima values with a reduced energy bandgap. Open circuit voltage along with transition density matrix analysis recommended that charge transfer occurs from lower energy orbitals to higher energy orbitals. Reorganization energy analysis also suggested high charge mobility occurs from donor polymer to acceptor molecules. Results of all parameters advocated that designed molecules are potential candidates for high-performance organic solar cells.


2019 ◽  
Vol 16 (3) ◽  
pp. 236-243 ◽  
Author(s):  
Hui Zhang ◽  
Yibing Ma ◽  
Youyi Sun ◽  
Jialei Liu ◽  
Yaqing Liu ◽  
...  

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.


2021 ◽  
Vol 60 (16) ◽  
pp. 8813-8817
Author(s):  
Shuting Pang ◽  
Zhiqiang Wang ◽  
Xiyue Yuan ◽  
Langheng Pan ◽  
Wanyuan Deng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


2021 ◽  
Author(s):  
Lin Lin ◽  
Zeping Huang ◽  
Yuanqi Luo ◽  
Tingen Peng ◽  
Baitian He ◽  
...  

The synthesis and application as a cathode interlayer in organic photovoltaics of a fluorene derivative with pyridyl functional chains are presented.


Sign in / Sign up

Export Citation Format

Share Document