scholarly journals Broadband Design of Acoustic Metasurfaces for the Stabilization of a Mach 4 Boundary Layer Flow

Author(s):  
Rui Zhao ◽  
Xiao Liu ◽  
Chih-Yung Wen ◽  
Xiaoyong Wang

Abstract A piecewise acoustic metasurface is designed to suppress the first mode while marginally amplifying the Mack second mode in a Mach 4 flat-plate boundary layer (BL) flow. The results of linear stability theory (LST) and the eN method demonstrate the stabilization effect and transition delay performance, respectively. However, the direct numerical simulation (DNS) results indicate that the designed broadband acoustic metasurface actually weakly excites the first mode with a slightly larger fluctuating pressure amplitude at the surface, which is in contrast to the analysis of LST. The discrepancies are found to lie in the ‘roughness’ effect caused by the recirculation zones inside the microslits and the alternating expansion and compression waves induced at the slit edges, which significantly amplifies the first mode. For further clarification of the competitive mechanism between the acoustic stabilization and ‘roughness’ destabilization effects of metasurfaces on the first mode, a carefully designed metasurface is installed at the maximum growth rate region, which excites the first mode on the metasurface but inhibits its development downstream.

Author(s):  
Seyed Mohammad Hasheminejad ◽  
Hatsari Mitsudharmadi ◽  
S. H. Winoto ◽  
Kim Boon Lua ◽  
Hong Tong Low

The evolution of streamwise counter-rotating vortices induced by different leading edge patterns is investigated quantitatively using hot-wire anemometer. A notched and triangular leading edge with the same wavelength and amplitude were designed to induce streamwise vortices over a flat plate at Reynolds number (based on the wavelength of the leading edge patterns) of 3080 corresponding to free-stream velocity of 3 m/s. The streamwise velocity at different streamwise locations collected and analyzed using a single wire probe hot-wire anemometer showed reveal different characteristics of boundary layer flow due to the presence of these two leading edge patterns. The major difference is the appearance of an additional streamwise vortex between the troughs of the notched pattern. Such vortices increase the mixing effect in the boundary layer as well as the velocity profile.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 142
Author(s):  
Xin He ◽  
Kai Zhang ◽  
Chunpei Cai

This paper presents our recent work on investigating velocity slip boundary conditions’ effects on supersonic flat plate boundary layer flow stability. The velocity-slip boundary conditions are adopted and the flow properties are obtained by solving boundary layer equations. Stability analysis of two such boundary layer flows is performed by using the Linear stability theory. A global method is first utilized to obtain approximate discrete mode values. A local method is then utilized to refine these mode values. All the modes in these two scenarios have been tracked upstream-wisely towards the leading edge and also downstream-wisely. The mode values for the no-slip flows agree well with the corresponding past results in the literature. For flows with slip boundary conditions, a stable and an unstable modes are detected. Mode tracking work is performed and the results illustrate that the resonance phenomenon between the stable and unstable modes is delayed with slip boundary conditions. The enforcement of the slip boundary conditions also shortens the unstable mode region. As to the conventional second mode, flows with slip boundary conditions can be more stable streamwisely when compared with the results for corresponding nonslip flows.


2002 ◽  
Vol 456 ◽  
pp. 49-84 ◽  
Author(s):  
PETER WASSERMANN ◽  
MARKUS KLOKER

Crossflow-vortex-induced laminar breakdown in a three-dimensional flat-plate boundary-layer flow is investigated in detail by means of spatial direct numerical simulations. The base flow is generic for an infinite swept wing, with decreasing favourable chordwise pressure gradient. First, the downstream growth and nonlinear saturation states initiated by a crossflow-vortex-mode packet as well as by single crossflow-vortex modes with various spanwise wavenumbers are simulated. Second, the secondary instability of the flow induced by the saturated crossflow vortices is scrutinized, clearly indicating the convective nature of the secondary instability and strengthening knowledge of the conditions for its onset. Emphasis is on the effect of crossflow-vortex-mode packets and of the spanwise vortex spacing on the secondary stability properties of the saturation states. Saturated uniform crossflow vortices initiated by single crossflow-vortex modes turn out to be less unstable than vortices initiated by a packet of vortex modes, and closely spaced saturated vortices are even stable. Third, we investigate the transition control strategy of upstream flow deformation by appropriate steady nonlinear vortex modes as applied in wind tunnel experiments at the Arizona State University. A significant transition delay is shown in the base flow considered here, and the underlying mechanisms are specified.


2015 ◽  
Vol 10 (3) ◽  
pp. 41-47
Author(s):  
Vladimir Lysenko ◽  
Sergey Gaponov ◽  
Boris Smorodsky ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
...  

Theoretical and experimental investigation of the influence of porous-coating thickness on the stability of the supersonic flat-plate boundary layer at free-stream Mach number M = 2 have been performed. Good quantitative agreement of experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on the linear stability theory has been achieved. It is shown that the increase of the porous-coating thickness leads to the boundary layer destabilization.


2016 ◽  
Vol 798 ◽  
pp. 751-773 ◽  
Author(s):  
V. I. Lysenko ◽  
S. A. Gaponov ◽  
B. V. Smorodsky ◽  
Yu. G. Yermolaev ◽  
A. D. Kosinov ◽  
...  

A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of $M_{\infty }=2$ has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.


Sign in / Sign up

Export Citation Format

Share Document