scholarly journals Peripheral Nerve Defects: Repair Using Autogenous Vein Grafts Filled with PRP and Active Nerve Microtissues and Evaluation by Novel Multimodal Ultrasound Techniques

Author(s):  
Yaqiong Zhu ◽  
Nan Peng ◽  
Jing Wang ◽  
Zhuang Jin ◽  
Lianhua Zhu ◽  
...  

Abstract Background: Developing biocompatible nerve conduits that accelerate peripheral nerve regeneration, lengthening and functional recovery remains a challenge. The combined application of nerve microtissues and platelet-rich plasma (PRP) provides abundant Schwann cells (SCs) and various natural growth factors and can compensate for the deficiency of SCs in the nerve bridge, as well as the limitations of applying a single type of growth factor. Multimodal ultrasound evaluation can provide additional information on the stiffness and microvascular flow perfusion of the tissue. This study was designed to investigate the effectiveness of a novel tissue-engineered nerve graft composed of an autogenous vein, nerve microtissues and PRP in reconstructing a 12-mm tibial nerve defect and to explore the value of multimodal ultrasound techniques in evaluating the prognosis of nerve repair. Methods: In vitro, nerve microtissue activity was first investigated, and the effects on SC proliferation, migration, factor secretion, and axonal regeneration of dorsal root ganglia (DRG) were evaluated by coculture with nerve microtissues and PRP. In vivo, seventy-five rabbits were equally and randomly divided into Hollow, PRP, Micro-T (Microtissues), Micro-T+PRP and Autograft groups. By analysing the neurological function, electrophysiological recovery, and the comparative results of multimodal ultrasound and histological evaluation, we investigated the effect of these new nerve grafts in repairing tibial nerve defects. Results: Our results showed that the combined application of nerve microtissues and PRP could significantly promote the proliferation, secretion and migration of SCs and the regeneration of axons in the early stage. The Micro-T+PRP group and Autograft groups exhibited the best nerve repair 12 weeks postoperatively. In addition, the changes in target tissue stiffness and microvascular perfusion on multimodal ultrasound (shear wave elastography; contrast-enhanced ultrasonography; Angio PlaneWave UltrasenSitive, AngioPLUS) were significantly correlated with the histological results, such as collagen area percentage and VEGF expression, respectively. Conclusion: Our novel tissue-engineered nerve graft shows excellent efficacy in repairing 12-mm defects of the tibial nerve in rabbits. Moreover, multimodal ultrasound may provide a clinical reference for prognosis by quantitatively evaluating the stiffness and microvescular flow of nerve grafts and targeted muscles.

Hand Surgery ◽  
1996 ◽  
Vol 01 (02) ◽  
pp. 123-130 ◽  
Author(s):  
Clayton A. Peimer ◽  
Reid R. Heffner ◽  
Craig S. Howard ◽  
James J. Czyrny ◽  
Frances S. Sherwin

The purpose of this study was to evaluate and compare peripheral nerve regeneration following the use of alternative non neural materials to traditional direct repair techniques and autologous nerve graft. Autologous vein and synthetic polytetrafluoroethylene (PTFE) segments were used to repair standardized defects of the tibial nerve in rabbits. The materials served as sheaths for direct primary repairs and as conduits to bridge a gap in the nerve. Evaluations performed at five months revealed that direct primary repairs ensheathed by vein segments produced a significantly greater number of axons regenerating across the repair site, whereas PTFE, either as a sheath or conduit, failed to improve axonal regeneration. Also, vein conduits used to bridge nerve gaps was less effective than traditional nerve grafts.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Jihyeung Kim ◽  
Young Eun Choi ◽  
Jeong Hwan Kim ◽  
Seung Hak Lee ◽  
Sohee Oh ◽  
...  

Purpose. Although many surgeons have anecdotally described reversing the polarity of the autograft with the intent of improving regeneration, the optimal orientation of the autogenous nerve graft remains controversial. The aim of this study was to compare (1) the outcomes of orthodromic and antidromic nerve grafts to clarify the effect of nerve graft polarity and (2) the outcome of either form of nerve grafts with that of nerve repair. Methods. In 14 of the 26 rabbits used in this study, a 1 cm defect was made in the tibial nerve. An orthodromic nerve graft on one side and an antidromic nerve graft on the other were performed using a 1.2 cm long segment of the peroneal nerve. In the remaining 12 rabbits, the tibial nerve was transected completely and then repaired microscopically on one side but left untreated on the other. Electrophysiologic studies were performed in all animals at 8 weeks after surgery, and the sciatic nerves were harvested. Results. Compound motor action potential was visible in all rabbits treated by nerve repair but in only half of the rabbits treated by nerve graft. There was no significant difference in the compound motor action potential, nerve conduction velocity, or total number of axons between the orthodromic and antidromic nerve graft groups. However, in both groups, the outcome was significantly poorer than that of the nerve repair group. Conclusion. There was no significant difference by electromyographic or histologic evaluation between orthodromic and antidromic nerve grafts. Direct nerve repair with moderate tension may be a more effective treatment than nerve grafting.


2017 ◽  
Vol 33 (08) ◽  
pp. 549-556 ◽  
Author(s):  
Marcela Fernandes ◽  
Sandra Valente ◽  
João Santos ◽  
Rebeca Furukawa ◽  
Carlos Fernandes ◽  
...  

Background Peripheral nerves have limited regeneration capacity despite best efforts. Platelet-rich fibrin (PRF) contains growth factors that may stimulate peripheral nerve regeneration. This study verified whether nerve regeneration using autogenous vein conduits filled with PRF is comparable to autologous nerve graft, which is the standard treatment. Methods The sciatic nerve of the right paw of inbred rats was dissected, and a 10-mm segment was removed from rats randomized to receive autologous nerve graft (GRAFT) or vein conduit filled with PRF (PRF). A third group (SHAM) underwent surgery without nerve resection. The sciatic functional index (SFI) was measured 0, 30, 60, and 90 days postsurgery. Morphometry and morphology of the distal nerve injury were examined. Motor neurons in the anterior horn of spinal cord stained with FluoroGold and counted. Results No significant difference in SFI was observed between the GRAFT and PRF groups at any time point (all p > 0.05); however, SFI was lower in both groups compared with SHAM (p < 0.05). Morphometric and morphologic indexes were not significantly different between the GRAFT and PRF groups (p > 0.05); however, nerve fibers, axons, and myelin sheaths were thinner in both groups compared with SHAM (p = 0.0001). Average motor neurons' count was similar between the GRAFT and PRF groups (p = 0.91); the count was lower in both groups compared with SHAM (p = 0.002 and p = 0.001), respectively. Conclusion Autologous nerve GRAFT and PRF-filled autogenous vein conduits were associated with similar outcomes, and worse than those observed in SHAM controls. Vein conduits filled with PRF may be a favorable alternative treatment to nerve grafts.


2009 ◽  
Vol 24 (3) ◽  
pp. 221-225 ◽  
Author(s):  
Aristides Palhares ◽  
Fausto Viterbo ◽  
Ricardo Galesso Cardoso

PURPOSE: To evaluate the applicability of the use of autogenous muscle treated in various ways, as a substitute of the nerve grafts. METHODS: Rats were divided into seven groups that received, as a treatment for a standard nerve injury, the following types of grafts: fresh muscle, muscle fixed with 10% formaldehyde, muscle frozen in a freezer, muscle frozen in refrigerator, nerveless muscle, peripheral nerve and a group was without any treatment. It assessed the histological appearance of the nerve fibers in the segment repaired. RESULTS: The evaluation of the segment nervous repaired showed nerve fibers through the graft in almost all groups, but the methodology employed has not adequately characterized the differences between the groups. CONCLUSION: This study showed the migration of nerves fibers through all grafts used.


1995 ◽  
Vol 82 (4) ◽  
pp. 623-629
Author(s):  
Joyce A. Gilmour ◽  
Lynn M. Myles ◽  
Michael A. Glasby

✓ This study assessed the changes that occurred in the spinal motoneuron pool after the repair of a specific peripheral nerve by means of several clinically appropriate surgical techniques: nerve graft, muscle graft, and epineurial suture. The motoneuron pool relating to a single muscle was assessed at 50, 100, 200, and 300 days after repair via retrograde axonal transport of the neural tracer horseradish peroxidase. The results indicate that although a small portion of the motoneuron population dies following peripheral nerve surgery, this is not a significant number. The majority of the anterior horn cells appear to have the ability to both survive nerve transection and form new functional connections with the regenerated nerve after repair. The degree of cell loss is influenced by the nature of the injury and the method of repair implemented. Injuries involving neurotmesis result in the loss of a greater proportion of the cell population than less severe injuries involving axonotmesis. A greater proportion of the motoneuron population is preserved when the severed nerve has been repaired using a direct epineurial suture than when repair is achieved by means of a graft. The two methods of grafting produced comparable results, although the muscle graft tended to result in the preservation of a greater number of cells than the nerve graft, making it an acceptable alternative method for the surgical repair of short gaps in peripheral nerves.


2017 ◽  
Vol 42 (3) ◽  
pp. E2 ◽  
Author(s):  
Zachary C. Gersey ◽  
S. Shelby Burks ◽  
Kim D. Anderson ◽  
Marine Dididze ◽  
Aisha Khan ◽  
...  

OBJECTIVE Long-segment injuries to large peripheral nerves present a challenge to surgeons because insufficient donor tissue limits repair. Multiple supplemental approaches have been investigated, including the use of Schwann cells (SCs). The authors present the first 2 cases using autologous SCs to supplement a peripheral nerve graft repair in humans with long-term follow-up data. METHODS Two patients were enrolled in an FDA-approved trial to assess the safety of using expanded populations of autologous SCs to supplement the repair of long-segment injuries to the sciatic nerve. The mechanism of injury included a boat propeller and a gunshot wound. The SCs were obtained from both the sural nerve and damaged sciatic nerve stump. The SCs were expanded and purified in culture by using heregulin β1 and forskolin. Repair was performed with sural nerve grafts, SCs in suspension, and a Duragen graft to house the construct. Follow-up was 36 and 12 months for the patients in Cases 1 and 2, respectively. RESULTS The patient in Case 1 had a boat propeller injury with complete transection of both sciatic divisions at midthigh. The graft length was approximately 7.5 cm. In the postoperative period the patient regained motor function (Medical Research Council [MRC] Grade 5/5) in the tibial distribution, with partial function in peroneal distribution (MRC Grade 2/5 on dorsiflexion). Partial return of sensory function was also achieved, and neuropathic pain was completely resolved. The patient in Case 2 sustained a gunshot wound to the leg, with partial disruption of the tibial division of the sciatic nerve at the midthigh. The graft length was 5 cm. Postoperatively the patient regained complete motor function of the tibial nerve, with partial return of sensation. Long-term follow-up with both MRI and ultrasound demonstrated nerve graft continuity and the absence of tumor formation at the repair site. CONCLUSIONS Presented here are the first 2 cases in which autologous SCs were used to supplement human peripheral nerve repair in long-segment injury. Both patients had significant improvement in both motor and sensory function with correlative imaging. This study demonstrates preliminary safety and efficacy of SC transplantation for peripheral nerve repair.


2008 ◽  
Vol 97 (4) ◽  
pp. 310-316 ◽  
Author(s):  
L. B. Dahlin

Nerve injuries extend from simple nerve compression lesions to complete nerve injuries and severe lacerations of the nerve trunks. A specific problem is brachial plexus injuries where nerve roots can be ruptured, or even avulsed from the spinal cord, by traction. An early and correct diagnosis of a nerve injury is important. A thorough knowledge of the anatomy of the peripheral nerve trunk as well as of basic neurobiological alterations in neurons and Schwann cells induced by the injury are crucial for the surgeon in making adequate decisions on how to repair and reconstruct nerves. The technique of peripheral nerve repair includes four important steps (preparation of nerve end, approximation, coaptation and maintenance). Nerves are usually repaired primarily with sutures applied in the different tissue components, but various tubes are available. Nerve grafts and nerve transfers are alternatives when the injury induces a nerve defect. Timing of nerve repair is essential. An early repair is preferable since it is advantageous for neurobiological reasons. Postoperative rehabilitation, utilising the patients' own coping strategies, with evaluation of outcome are additional important steps in treatment of peripheral nerve injuries. In the rehabilitation phase adequate handling of pain, allodynia and cold intolerance are emphasised.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhi Yao ◽  
Li-Wei Yan ◽  
Shuai Qiu ◽  
Fu-Lin He ◽  
Fan-Bin Gu ◽  
...  

Objective. The use of a biofabrication nerve scaffold, which mimics the nerve microstructure, as an alternative for autologous nerve transplantation is a promising strategy for treating peripheral nerve defects. This study aimed to design a customized biofabrication scaffold model with the characteristics of human peripheral nerve fascicles. Methods. We used Micro-MRI technique to obtain different nerve fascicles. A full-length 28 cm tibial nerve specimen was obtained and was divided into 14 two-centimetre nerve segments. 3D models of the nerve fascicles were obtained by three-dimensional reconstruction after image segmentation. The central line of the nerve fascicles was fitted, and the aggregation of nerve fascicles was analysed quantitatively. The nerve scaffold was designed by simulating the clinical nerve defect and extracting information from the acquired nerve fascicle data; the scaffold design was displayed by 3D printing to verify the accuracy of the model. Result. The microstructure of the sciatic nerve, tibial nerve, and common peroneal nerve in the nerve fascicles could be obtained by three-dimensional reconstruction. The number of cross fusions of tibial nerve fascicles from proximal end to distal end decreased gradually. By designing the nerve graft in accordance with the microstructure of the nerve fascicles, the 3D printed model demonstrated that the two ends of the nerve defect can be well matched. Conclusion. The microstructure of the nerve fascicles is complicated and changeable, and the spatial position of each nerve fascicle and the long segment of the nerve fascicle aggregation show great changes at different levels. Under the premise of the stability of the existing imaging techniques, a large number of scanning nerve samples can be used to set up a three-dimensional database of the peripheral nerve fascicle microstructure, integrating the gross imaging information, and provide a template for the design of the downstream nerve graft model.


2018 ◽  
Vol 34 (09) ◽  
pp. 672-674 ◽  
Author(s):  
Susan Mackinnon

Aim The author presents a solicited “white paper” outlining her perspective on the role of nerve transfers in the management of nerve injuries. Methods PubMed/MEDLINE and EMBASE databases were evaluated to compare nerve graft and nerve transfer. An evaluation of the scientific literature by review of index articles was also performed to compare the number of overall clinical publications of nerve repair, nerve graft, and nerve transfer. Finally, a survey regarding the prevalence of nerve transfer surgery was administrated to the World Society of Reconstructive Microsurgery (WSRM) results. Results Both nerve graft and transfer can generate functional results and the relative success of graft versus transfer depended on the function to be restored and the specific transfers used. Beginning in the early 1990s, there has been a rapid increase from baseline of nerve transfer publications such that clinical nerve transfer publication now exceeds those of nerve repair or nerve graft. Sixty-two responses were received from WSRM membership. These surgeons reported their frequency of “usually or always using nerve transfers for repairing brachial plexus injuries as 68%, radial nerves as 27%, median as 25%, and ulnar as 33%. They reported using nerve transfers” sometimes for brachial plexus 18%, radial nerve 30%, median nerve 34%, ulnar nerve 35%. Conclusion Taken together this evidence suggests that nerve transfers do offer an alternative technique along with tendon transfers, nerve repair, and nerve grafts.


1989 ◽  
Vol 14 (1) ◽  
pp. 102-104 ◽  
Author(s):  
G. Risitano ◽  
G. Cavallaro ◽  
M. Lentini

A new experimental model using the rat sciatic nerve has been devised and used in ten rats to compare the results of using a vein and a nerve graft in different fascicles of the same sciatic nerve, a third fascicle being preserved intact as a control. The results, judged clinically, electrophysiologically and histologically, show persistence of the vein graft as a conduit even six months after the operation and a similar pattern of nerve regeneration in the two different grafts.


Sign in / Sign up

Export Citation Format

Share Document