scholarly journals Convergence of Scaffold Guided Bone Regeneration and RIA Bone Grafting for the Treatment of a Critical-Sized Bone Defect of the Femoral Shaft

Author(s):  
Philipp Kobbe ◽  
Markus Laubach ◽  
Dietmar W Hutmacher ◽  
Hatem Alabdulrahman ◽  
Richard M Sellei ◽  
...  

Abstract BackgroundCritical-sized bone defects, mainly from trauma, infection or tumor resection are a challenging condition, often resulting in prolonged, complicated course of treatment. Autografts are considered as the gold standard to replace lost bone. However, limited amount of bone graft volume and donor site morbidity have established the need for the development of alternative methods such as scaffold-based Tissue Engineering (TE). The emerging market of additive manufacturing (3D-printing) has markedly influenced the manufacturing of scaffolds out of a variety of biodegradable materials. Particularly medical-grade polycaprolactone and tricalcium phosphate (mPCL-TCP) scaffolds show appropriate biocompatibility and osteoconduction with good biomechanical strength in large preclinical animal models. This case report aims to show first evidence of the feasibility, safety, and efficacy of mPCL-TCP scaffolds applied in a patient with a long bone segmental defect.Case presentationThe presented case comprises a 29-year-old patient who has suffered a left-sided II° open femoral shaft fracture. After initial external fixation and subsequent conversion to reamed antegrade femoral nailing the patient presented with an infection in the area of the formerly open fracture. Multiple revision surgeries followed to eradicate microbial colonization and attempt to achieve bone healing. However, 18 months after the index event, still insufficient diaphyseal bone formation was observed with circumferential bony defect measuring 6 cm at the medial and 11 cm at the lateral aspect of the femur. Therefore, the patient received a patient-specific mPCL-TCP scaffold, fitting the exact anatomical defect and the inserted nail, combined with autologous bone graft (ABG) harvested with the Reamer Irrigator Aspirator system (RIA – Synthes®) as well as bone morphogenetic protein-2. Radiographic follow-up 12 months after implantation of the TE scaffold shows advanced bony fusion and bone formation inside and outside the fully interconnected scaffold architecture.ConclusionThis case report shows a promising translation of scaffold-based TE from bench to bedside. Preliminary evidence indicates that the use of medical-grade scaffolds is safe and has the potential to improve bone healing. Further, its synergistic effects when combined with ABG show the potential of mPCL-TCP scaffolds to support new bone formation in segmental long bone defects.

2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Philipp Kobbe ◽  
Markus Laubach ◽  
Dietmar W. Hutmacher ◽  
Hatem Alabdulrahman ◽  
Richard M. Sellei ◽  
...  

Abstract Background Critical-sized bone defects, mainly from trauma, infection or tumor resection are a challenging condition, often resulting in prolonged, complicated course of treatment. Autografts are considered as the gold standard to replace lost bone. However, limited amount of bone graft volume and donor-site morbidity have established the need for the development of alternative methods such as scaffold-based tissue engineering (TE). The emerging market of additive manufacturing (3D-printing) has markedly influenced the manufacturing of scaffolds out of a variety of biodegradable materials. Particularly medical-grade polycaprolactone and tricalcium phosphate (mPCL–TCP) scaffolds show appropriate biocompatibility and osteoconduction with good biomechanical strength in large preclinical animal models. This case report aims to show first evidence of the feasibility, safety, and efficacy of mPCL–TCP scaffolds applied in a patient with a long bone segmental defect. Case presentation The presented case comprises a 29-year-old patient who has suffered a left-sided II° open femoral shaft fracture. After initial external fixation and subsequent conversion to reamed antegrade femoral nailing, the patient presented with an infection in the area of the formerly open fracture. Multiple revision surgeries followed to eradicate microbial colonization and attempt to achieve bone healing. However, 18 months after the index event, still insufficient diaphyseal bone formation was observed with circumferential bony defect measuring 6 cm at the medial and 11 cm at the lateral aspect of the femur. Therefore, the patient received a patient-specific mPCL–TCP scaffold, fitting the exact anatomical defect and the inserted nail, combined with autologous bone graft (ABG) harvested with the Reamer–Irrigator–Aspirator system (RIA—Synthes®) as well as bone morphogenetic protein-2 (BMP-2). Radiographic follow-up 12 months after implantation of the TE scaffold shows advanced bony fusion and bone formation inside and outside the fully interconnected scaffold architecture. Conclusion This case report shows a promising translation of scaffold-based TE from bench to bedside. Preliminary evidence indicates that the use of medical-grade scaffolds is safe and has the potential to improve bone healing. Further, its synergistic effects when combined with ABG and BMP-2 show the potential of mPCL–TCP scaffolds to support new bone formation in segmental long bone defects.


2020 ◽  
Vol 46 (3) ◽  
pp. 221-226
Author(s):  
Alper Kızıldağ ◽  
Ufuk Tasdemir ◽  
Taner Arabacı ◽  
Canan Aksu Kızıldağ ◽  
Mevlüt Albayrak ◽  
...  

The aim of this study was to evaluate the effect of autogenous tooth bone graft (ATBG) combined with platelet-rich fibrin (PRF) on bone healing in rabbit peri-implant osseous defects. Eighteen New Zealand rabbits were divided into 3 groups. Bone defects were prepared in each rabbit, and then an implant cavity was created in the defects. Dental implants were placed, and the peri-implant bone defects were treated with the following 3 methods: no graft material was applied in the control group, bone defects were treated with ATBG in the ATBG group, and bone defects were treated with ATBG combined with PRF in the ATBG+PRF group. After 28 days, the rabbits were sacrificed, and the dental implants with surrounding bone were removed. New bone formation and the percentage of bone-to-implant contact (BIC) were determined with histomorphometric evaluations. New bone formation was significantly higher in the ATBG+PRF group than the control and ATBG groups (P < .05). In addition, BIC was significantly higher in the ATBG+PRF group than in the control and ATBG groups (P < .05). The combination of ATBG with PRF contributed to bone healing in rabbits with peri-implant bone defects.


2011 ◽  
Vol 5 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Oliver D Schneider ◽  
Dirk Mohn ◽  
Roland Fuhrer ◽  
Karina Klein ◽  
Käthi Kämpf ◽  
...  

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


1996 ◽  
Vol 14 (3) ◽  
pp. 351-369 ◽  
Author(s):  
Kenneth D. Johnson ◽  
Kerek E. Frierson ◽  
Tony S. Keller ◽  
Charles Cook ◽  
Robert Scheinberg ◽  
...  

2021 ◽  
Vol 24 (1) ◽  
pp. 1-11
Author(s):  
R. Vasileva ◽  
Ts. Chaprazov

Erythropoietin (ЕPО) is a glycoprotein hormone, mainly known for its haemopoietic function. For orthopaedics, its pleiotropic effects – osteogenic and angiogenic potential, are of primary interest. The exact mechanism of EPO action is still unclear. The effects of EPO on bone healing were investigated through experiments with rats, mice, rabbits and pigs. Each of used models for experimental bone defects (calvarial models, long bone segmental defects, posterolateral spinal fusion and corticosteroid-induced femoral head osteonecrosis) has specific advantages and flaws. Obtaining specific and correct results is largely dependent on the used model. The brief evaluation of models could serve for standardisation of preclinical studies on bone regeneration.


2021 ◽  
Vol 32 (2) ◽  
pp. 526-530
Author(s):  
Takuya Uemura ◽  
Koichi Yano ◽  
Kiyohito Takamatsu ◽  
Yusuke Miyashima ◽  
Hiroyuki Yasuda ◽  
...  

Romosozumab is a humanized, anti-sclerostin monoclonal antibody used to treat osteoporosis, which increases bone formation and decreases bone resorption. It enhances fracture healing and systemic romosozumab administration may have therapeutic potentials for accelerating bone healing of even nonunion. Herein, a 61-year-old heavy smoker male with distal radius nonunion who achieved successful bone union by combination therapy of romosozumab and spanning distraction plate fixation with bone graft substitutes was presented. Through the dorsal approach, atrophic comminuted nonunion of the distal radius was sufficiently debrided. Reduction of the distal radius was performed using indirect ligamentotaxis, and a 14-hole locking plate was fixed from the third metacarpal to the radial shaft. A beta (β) tricalcium phosphate block was mainly packed into the substantial metaphyseal bone defect with additional bone graft from the resected ulnar head. Postoperatively, systemic administration of monthly romosozumab was continued for six months. Complete bone union was achieved 20 weeks postoperatively and the plate was, then, removed. Wrist extension and flexion improved to 75o and 55o, respectively, without pain, and grip strength increased 52 weeks postoperatively from 5.5 kg to 22.4 kg. During romosozumab treatment, bone formation marker levels increased rapidly and finally returned to baseline, and bone resorption marker levels remained low. In conclusion, combination of systemic romosozumab administration and grafting β-tricalcium phosphate with bridge plating provides an effective treatment option for difficult cases of comminuted distal radius nonunion with risk factors such as smoking, diabetes, and fragility.


Sign in / Sign up

Export Citation Format

Share Document