scholarly journals Preclinical studies on pleiotropic functions of erythropoietin on bone healing

2021 ◽  
Vol 24 (1) ◽  
pp. 1-11
Author(s):  
R. Vasileva ◽  
Ts. Chaprazov

Erythropoietin (ЕPО) is a glycoprotein hormone, mainly known for its haemopoietic function. For orthopaedics, its pleiotropic effects – osteogenic and angiogenic potential, are of primary interest. The exact mechanism of EPO action is still unclear. The effects of EPO on bone healing were investigated through experiments with rats, mice, rabbits and pigs. Each of used models for experimental bone defects (calvarial models, long bone segmental defects, posterolateral spinal fusion and corticosteroid-induced femoral head osteonecrosis) has specific advantages and flaws. Obtaining specific and correct results is largely dependent on the used model. The brief evaluation of models could serve for standardisation of preclinical studies on bone regeneration.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guoliang Wang ◽  
Wen Luo ◽  
Yong Zhou ◽  
Zhenfeng Zhu ◽  
Zihou Zhao ◽  
...  

Background. Longbone infected bone defect remains a great challenge due to multiple surgeries, long-term treatment duration, and uncertain prognosis. Treatment principles include eradication/debridement, stabilization, and antibiotic administration. An antibiotic cement-coated nail has shown great prospects due to both local antibiotic elution and stabilization of bone defects. However, the current fabrication technique remains to be improved. Methods. For the first time, we described a new method for custom-made cement-coated nail fabrication based on a 3D printing technique. A retrospective study of 19 consecutive patients with long bone infected bone defects from one medical center was conducted who met the inclusion and exclusion criteria from November 2016 to May 2020. The treatment involved thorough debridement, custom-made antibiotic cement-coated nail filling, and culture-specific systemic antibiotic treatment guided by a multidisciplinary team. Clinical and radiographic examinations (X-ray and CT scans) were used to evaluate bony union. Clinical and laboratory examinations were used to evaluate the infection control. The SF-36 score was used to evaluate patients’ quality of life pre- and postoperatively. Results. The mean follow-up was 98.8 weeks (ranging from 40 to 192). All cases achieved infection control, 3 cases achieved bone healing after one-stage operation, and 12 cases achieved bone healing after a two-stage bone graft procedure. At the last follow-up, none of the 19 patients had infection recurrence or 1 case had failure of the protective plate. The pre- and postoperative SF-36 score showed that there were statistical differences in all the 9 aspects. Conclusions. The precise custom-made antibiotic cement-coated intramedullary nail through the 3D printing technique used in this study is an effective strategy for the treatment of infected bone defects of long bone. This technique may help to increase the infection control rate and promote bone healing.


2020 ◽  
Author(s):  
Philipp Kobbe ◽  
Markus Laubach ◽  
Dietmar W Hutmacher ◽  
Hatem Alabdulrahman ◽  
Richard M Sellei ◽  
...  

Abstract BackgroundCritical-sized bone defects, mainly from trauma, infection or tumor resection are a challenging condition, often resulting in prolonged, complicated course of treatment. Autografts are considered as the gold standard to replace lost bone. However, limited amount of bone graft volume and donor site morbidity have established the need for the development of alternative methods such as scaffold-based Tissue Engineering (TE). The emerging market of additive manufacturing (3D-printing) has markedly influenced the manufacturing of scaffolds out of a variety of biodegradable materials. Particularly medical-grade polycaprolactone and tricalcium phosphate (mPCL-TCP) scaffolds show appropriate biocompatibility and osteoconduction with good biomechanical strength in large preclinical animal models. This case report aims to show first evidence of the feasibility, safety, and efficacy of mPCL-TCP scaffolds applied in a patient with a long bone segmental defect.Case presentationThe presented case comprises a 29-year-old patient who has suffered a left-sided II° open femoral shaft fracture. After initial external fixation and subsequent conversion to reamed antegrade femoral nailing the patient presented with an infection in the area of the formerly open fracture. Multiple revision surgeries followed to eradicate microbial colonization and attempt to achieve bone healing. However, 18 months after the index event, still insufficient diaphyseal bone formation was observed with circumferential bony defect measuring 6 cm at the medial and 11 cm at the lateral aspect of the femur. Therefore, the patient received a patient-specific mPCL-TCP scaffold, fitting the exact anatomical defect and the inserted nail, combined with autologous bone graft (ABG) harvested with the Reamer Irrigator Aspirator system (RIA – Synthes®) as well as bone morphogenetic protein-2. Radiographic follow-up 12 months after implantation of the TE scaffold shows advanced bony fusion and bone formation inside and outside the fully interconnected scaffold architecture.ConclusionThis case report shows a promising translation of scaffold-based TE from bench to bedside. Preliminary evidence indicates that the use of medical-grade scaffolds is safe and has the potential to improve bone healing. Further, its synergistic effects when combined with ABG show the potential of mPCL-TCP scaffolds to support new bone formation in segmental long bone defects.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Philipp Kobbe ◽  
Markus Laubach ◽  
Dietmar W. Hutmacher ◽  
Hatem Alabdulrahman ◽  
Richard M. Sellei ◽  
...  

Abstract Background Critical-sized bone defects, mainly from trauma, infection or tumor resection are a challenging condition, often resulting in prolonged, complicated course of treatment. Autografts are considered as the gold standard to replace lost bone. However, limited amount of bone graft volume and donor-site morbidity have established the need for the development of alternative methods such as scaffold-based tissue engineering (TE). The emerging market of additive manufacturing (3D-printing) has markedly influenced the manufacturing of scaffolds out of a variety of biodegradable materials. Particularly medical-grade polycaprolactone and tricalcium phosphate (mPCL–TCP) scaffolds show appropriate biocompatibility and osteoconduction with good biomechanical strength in large preclinical animal models. This case report aims to show first evidence of the feasibility, safety, and efficacy of mPCL–TCP scaffolds applied in a patient with a long bone segmental defect. Case presentation The presented case comprises a 29-year-old patient who has suffered a left-sided II° open femoral shaft fracture. After initial external fixation and subsequent conversion to reamed antegrade femoral nailing, the patient presented with an infection in the area of the formerly open fracture. Multiple revision surgeries followed to eradicate microbial colonization and attempt to achieve bone healing. However, 18 months after the index event, still insufficient diaphyseal bone formation was observed with circumferential bony defect measuring 6 cm at the medial and 11 cm at the lateral aspect of the femur. Therefore, the patient received a patient-specific mPCL–TCP scaffold, fitting the exact anatomical defect and the inserted nail, combined with autologous bone graft (ABG) harvested with the Reamer–Irrigator–Aspirator system (RIA—Synthes®) as well as bone morphogenetic protein-2 (BMP-2). Radiographic follow-up 12 months after implantation of the TE scaffold shows advanced bony fusion and bone formation inside and outside the fully interconnected scaffold architecture. Conclusion This case report shows a promising translation of scaffold-based TE from bench to bedside. Preliminary evidence indicates that the use of medical-grade scaffolds is safe and has the potential to improve bone healing. Further, its synergistic effects when combined with ABG and BMP-2 show the potential of mPCL–TCP scaffolds to support new bone formation in segmental long bone defects.


2007 ◽  
Vol 128 (8) ◽  
pp. 801-808 ◽  
Author(s):  
Chang-Wug Oh ◽  
Hae-Ryong Song ◽  
Jae-Young Roh ◽  
Jong-Keon Oh ◽  
Woo-Kie Min ◽  
...  

2012 ◽  
Vol 53 (4) ◽  
pp. 334-342 ◽  
Author(s):  
Amin Bigham-Sadegh ◽  
Pezhman Mirshokraei ◽  
Iraj Karimi ◽  
Ahmad Oryan ◽  
Amir Aparviz ◽  
...  

2011 ◽  
Vol 5 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Oliver D Schneider ◽  
Dirk Mohn ◽  
Roland Fuhrer ◽  
Karina Klein ◽  
Käthi Kämpf ◽  
...  

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


2017 ◽  
Vol 41 (11) ◽  
pp. 2417-2419 ◽  
Author(s):  
Gopal Shankar Krishnakumar ◽  
Alice Roffi ◽  
Davide Reale ◽  
Elizaveta Kon ◽  
Giuseppe Filardo

Sign in / Sign up

Export Citation Format

Share Document