scholarly journals Polymerase Chain Reaction Confirmed Mycobacterium Tuberculosis Intermediate Uveitis – Analysis of 22 Eyes of 14 Cases From a Tertiary Care Centre in South India.

Author(s):  
Janani Sreeniva ◽  
Anupreeti Jain ◽  
P. Neha Kamalini ◽  
M. K. Janani ◽  
Jyotirmay Biswas

Abstract Background: To report the role of Polymerase Chain Reaction in confirming the diagnosis of presumed mycobacterium Tuberculous Intermediate Uveitis. Method: Retrospective analysis of 22 eyes of 14 cases of presumed tubercular intermediate uveitis wherein intraocular fluid was tested for MTB DNA by Nested & Real time PCR, based on clinical suspicion of tubercular aetiology. QuantiFERON TB gold test and High Resolution CT Chest were done. Patients were treated with anti-tubercular therapy with oral steroids & immunomodulators. In the study, eleven were male (79%) and three female (21%). The median age was 34 years. Nested PCR for both IS 6110 & MPB 64 was positive in 64% of the cases, IS 6110 positive in 23% and MPB 64 positive in 15%. Real time PCR was positive in 48% of the cases. Vision improved in 33% cases, maintained in 57% cases and worsened in 10 % of cases. Conclusion: Presumed Tubercular intermediate uveitis can be confirmed by PCR of intraocular fluids. Anti-tubercular therapy with immunosuppression can improve vision and prevent recurrences in such cases.

Author(s):  
Ika Yasma Yanti ◽  
Dalima Ari Wahono Astrawinata

Toxigenic Clostridium difficile infection, causing a Pseudo Membrane Colitis (PMC) and Clostridium Difficile Associated Diarrhea(CDAD) has increased sharply. The largest risk factor is the use of antibiotics. The purpose of this study was to know how to determinethe prevalence and characteristics of subjects with Toxigenic Clostridium difficile and to assess the ability of the toxin rapid test comparedto real-time PCR. Ninety adult subjects with antibiotic therapy more than two (2) weeks were enrolled in this study. The results of toxinrapid test and real-time PCR were presented in a 2x2 table, statistical test used was Chi square. The prevalence of Toxigenic Clostridiumdifficile based on the toxin rapid test and by real-time PCR was 27.3% and 37.5%, respectively. There were significant differences betweenstool consistency and number of antibiotics used with the detection of Toxigenic Clostridium difficile. There was a relationship betweenthe duration of antibiotic therapy with the detection of Toxigenic Clostridium difficile using real-time PCR (p=0.010, RR=2.116). Thesensitivity, specificity, PPV, NPV, PLR and NLR rapid test against real-time PCR were 69.7%; 98.2%; 95.8%; 84.4%; 39.2 and 0.31,respectively. This study concluded that the prevalence of Clostridium difficile in RSCM was higher compared to that in Malaysia, Thailandand India; the subjects with antibiotic therapy for more than four (4) weeks had a double risk to have Toxigenic Clostridium difficilethan subjects with antibiotic therapy for less than that time (4 weeks). Thus, in this study, toxin rapid test could be used as a tool todetect Toxigenic Clostridium difficile.


2010 ◽  
Vol 134 (3) ◽  
pp. 444-448 ◽  
Author(s):  
Zhengming Gu ◽  
Jianmin Pan ◽  
Matthew J. Bankowski ◽  
Randall T. Hayden

Abstract Context.—BK virus infections among immunocompromised patients are associated with disease of the kidney or urinary bladder. High viral loads, determined by quantitative polymerase chain reaction (PCR), have been correlated with clinical disease. Objective.—To develop and evaluate a novel method for real-time PCR detection and quantification of BK virus using labeled primers. Design.—Patient specimens (n = 54) included 17 plasma, 12 whole blood, and 25 urine samples. DNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Science, Indianapolis, Indiana); sample eluate was PCR-amplified using the labeled primer PCR method. Results were compared with those of a user-developed quantitative real-time PCR method (fluorescence resonance energy transfer probe hybridization). Results.—Labeled primer PCR detected less than 10 copies per reaction and showed quantitative linearity from 101 to 107 copies per reaction. Analytical specificity of labeled primer PCR was 100%. With clinical samples, labeled primer PCR demonstrated a trend toward improved sensitivity compared with the reference method. Quantitative assay comparison showed an R2 value of 0.96 between the 2 assays. Conclusions.—Real-time PCR using labeled primers is highly sensitive and specific for the quantitative detection of BK virus from a variety of clinical specimens. These data demonstrate the applicability of labeled primer PCR for quantitative viral detection and offer a simplified method that removes the need for separate oligonucleotide probes.


2008 ◽  
Vol 98 (5) ◽  
pp. 592-599 ◽  
Author(s):  
Satyanarayana Tatineni ◽  
Uma Shankar Sagaram ◽  
Siddarame Gowda ◽  
Cecile J. Robertson ◽  
William O. Dawson ◽  
...  

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide, and is caused by a phloem-limited fastidious prokaryotic α-proteobacterium that is yet to be cultured. In this study, a combination of traditional polymerase chain reaction (PCR) and real-time PCR targeting the putative DNA polymerase and 16S rDNA sequence of ‘Candidatus Liberibacter asiaticus,’ respectively, were used to examine the distribution and movement of the HLB pathogen in the infected citrus tree. We found that ‘Ca. Liberibacter asiaticus’ was distributed in bark tissue, leaf midrib, roots, and different floral and fruit parts, but not in endosperm and embryo, of infected citrus trees. Quantification analysis of the HLB bacterium indicated that it was distributed unevenly in planta and ranged from 14 to 137,031 cells/μg of total DNA in different tissues. A relatively high concentration of ‘Ca. Liberibacter asiaticus’ was observed in fruit peduncles. Our data from greenhouse-infected plants also indicated that ‘Ca. Liberibacter asiaticus’ was transmitted systemically from infection site to different parts of the plant. Understanding the distribution and movement of the HLB bacterium inside an individual citrus tree is critical for discerning its virulence mechanism and to develop management strategies for HLB.


2002 ◽  
Vol 92 (7) ◽  
pp. 721-728 ◽  
Author(s):  
N. W. Schaad ◽  
D. Opgenorth ◽  
P. Gaush

Molecular-based techniques, such as polymerase chain reaction (PCR), can reduce the time needed for diagnosis of plant diseases when compared with classical isolation and pathogenicity tests. However, molecular techniques still require 2 to 3 days to complete. To the best of our knowledge, we describe for the first time a real-time PCR technique using a portable Smart Cycler for one-hour on-site diagnosis of an asymptomatic plant disease. Pierce's disease (PD) of grape, caused by the fastidious bacterium Xylella fastidiosa, causes serious losses in grapes in California and the southeastern United States. The disease has been difficult to diagnose because typical leaf scorching symptoms do not appear until late (June and after) in the season and the organism is very difficult to isolate early in the season. Sap and samples of macerated chips of secondary xylem from trunks of vines were used in a direct real-time PCR without extraction of DNA. Using two different sets of primers and probe, we diagnosed PD in 7 of 27 vines (26%) from four of six vineyards sampled 10 to 12 days after bud break in Kern, Tulare, and Napa counties of California. The diagnosis was confirmed by isolation of Xylella fastidiosa from two of the original PCR positive samples and later from symptomatic leaf petioles of four out of four vines from one vineyard that were originally PCR positive.


2014 ◽  
Vol 35 (6) ◽  
pp. 667-673 ◽  
Author(s):  
Hoonmo L. Koo ◽  
John N. Van ◽  
Meina Zhao ◽  
Xunyan Ye ◽  
Paula A. Revell ◽  
...  

Objective.To evaluate the accuracy of real-time polymerase chain reaction (PCR) for Clostridium difficile–associated disease (CDAD) detection, after hospital CDAD rates significantly increased following real-time PCR initiation for CDAD diagnosis.Design.Hospital-wide surveillance study following examination of CDAD incidence density rates by interrupted time series design.Setting.Large university-based hospital.Participants.Hospitalized adult patients.Methods.CDAD rates were compared before and after real-time PCR implementation in a university hospital and in the absence of physician and infection control practice changes. After real-time PCR introduction, all hospitalized adult patients were screened for C. difficile by testing a fecal specimen by real-time PCR, toxin enzyme-linked immunosorbent assay, and toxigenic culture.Results.CDAD hospital rates significantly increased after changing from cell culture cytotoxicity assay to a real-time PCR assay. One hundred ninety-nine hospitalized subjects were enrolled, and 101 fecal specimens were collected. C. difficile was detected in 18 subjects (18%), including 5 subjects (28%) with either definite or probable CDAD and 13 patients (72%) with asymptomatic C. difficile colonization.Conclusions.The majority of healthcare-associated diarrhea is not attributable to CDAD, and the prevalence of asymptomatic C. difficile colonization exceeds CDAD rates in healthcare facilities. PCR detection of asymptomatic C. difficile colonization among patients with non-CDAD diarrhea may be contributing to rising CDAD rates and a significant number of CDAD false positives. PCR may be useful for CDAD screening, but further study is needed to guide interpretation of PCR detection of C. difficile and the value of confirmatory tests. A gold standard CDAD diagnostic assay is needed.Infect Control Hosp Epidemiol 2014;35(6):667–673


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4618-4625 ◽  
Author(s):  
Mehdi Alizadeh ◽  
Marc Bernard ◽  
Bruno Danic ◽  
Charly Dauriac ◽  
Brigitte Birebent ◽  
...  

We have developed a real-time quantitative polymerase chain reaction (PCR) assay using TaqMan technology (Applied Biosystems, Foster City, CA) for monitoring donor cell engraftment in allogenic hematopoietic stem cell transplant recipients. For this purpose, we selected 19 specific sequence polymorphisms belonging to 11 human biallelic loci located on 9 different chromosomes. Using a set of specially designed primers and fluorogenic probes, we evaluated the 19 markers' informativity on a panel of 126 DNA samples from 63 recipient/donor pairs. In more than 90% of these pairs, discrimination between recipient and donor genetic profile was possible. By using serial dilutions of mixed DNAs, we evaluated the linearity and sensitivity of the method. A linear correlation with rhigher than 0.98 and a sensitivity of 0.1% proved reproducible. Fluorescent-based PCR of short tandem repeats (STR-PCR) and real-time PCR chimerism assay were compared with a panel of artificial cell mixtures. The main advantage of the real-time PCR method over STR-PCR chimerism assays is the absence of PCR competition and plateau biases, and results evidenced greater sensitivity and linearity with the real-time PCR method. Furthermore, different samples can be tested in the same PCR run with a final result in fewer than 48 hours. Finally, we prospectively analyzed patients who received allografts and present 4 different clinical situations that illustrate the informativity level of our method. In conclusion, this new assay provides an accurate quantitative assessment of mixed chimerism that can be useful in guiding early implementation of additional treatments in hematopoietic stem cell transplantation.


Sign in / Sign up

Export Citation Format

Share Document