scholarly journals Azospirillum Actinidiae sp. nov., a Nitrogen-Fixing Bacterium Isolated From The Roots of Kiwifruit Plants

Author(s):  
Ying Yang ◽  
Yue Zhu ◽  
Wei Li ◽  
Yajing Ren ◽  
Shengxiong Huang ◽  
...  

Abstract A novel diazotrophic bacterium, designated CCTCC AB 2021101T, was isolated from fresh roots of kiwifruit. Cells of strain CCTCC AB 2021101T were Gram-negative, aerobic and rod-shaped, with motility provided by peritrichous flagella. The 16S rRNA analysis showed that strain CCTCC AB 2021101T belongs to the genus Azospirillum and is closely related to Azospirillum melinis (98.32%), Azospirillum oryzae (97.73%), Azospirillum lipoferum (96.98%), Azospirillum humicireducens (96.49%) and Azospirillum largimobile (96.01%) and lower sequence similarity (<96.0 %) to all other species of the genus Azospirillum. Strain CCTCC AB 2021101T was able to grow well at 35–40℃ and pH 6.0–7.0, and tolerated up to 3.0 % (w/v) NaCl. The major saturated fatty acids are C14:0, C16:0 and C18:0. C18:1 ω7c and C16:0 3-OH were the major unsaturated and hydroxylated fatty acid. The G+C content was 67.8 mol%. Strain CCTCC AB 2021101T gave positive amplification for dinitrogen reductase (nifH gene). Highest nifH gene sequence similarities were obtained with Azospirillum brasilense AWB14T(95.9%), Azospirillum zeae Gr24T(95.56%), Azospirillum picis DSM 19922T(96.79%), Azospirillum lipoferum B22T(94.88%) and Azospirillum oryzae COC8T(94.88%). The activity of the nitrogenase of the strain was further confirmed by acetylene-reduction assay, which was recorded as 81 nmol ethylene h-1. Based on these data, strain CCTCC AB 2021101T is considered to represent a novel endophytic diazotrophs species in the genus Azospirillum, for which the name Azospirillum actinidiae sp. nov. is proposed. The type strain is CCTCC AB 2021101T.

2007 ◽  
Vol 57 (11) ◽  
pp. 2538-2542 ◽  
Author(s):  
A. M. Castillo ◽  
M. C. Gutiérrez ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

A novel halophilic archaeon, strain EJ-32T, was isolated from water from Lake Ejinor in Inner Mongolia, China. The taxonomy of strain EJ-32T was studied by using a polyphasic approach. On the basis of 16S rRNA gene sequence similarities, strain EJ-32T was shown to be phylogenetically related to Halorubrum coriense (97.9 %), Halorubrum trapanicum (97.9 %), Halorubrum sodomense (97.8 %), Halorubrum tebenquichense (97.8 %), Halorubrum xinjiangense (97.6 %), Halorubrum terrestre (97.4 %), Halorubrum distributum (97.1 %) and Halorubrum saccharovorum (96.4 %). Strain EJ-32T was found to be neutrophilic, non-motile and Gram-negative. It grew in medium containing saturation concentrations of NaCl and did not require magnesium for optimal growth. The G+C content of the DNA is 64.0 mol%. Values for DNA–DNA hybridization with respect to phylogenetically related Halorubrum species were ≤49 %, indicating that EJ-32T constitutes a different genospecies. The data show that strain EJ-32T represents a novel species of the genus Halorubrum, for which the name Halorubrum ejinorense sp. nov. is proposed. The type strain is EJ-32T (=CECT 7194T=CGMCC 1.6782T=JCM 14265T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2376-2380 ◽  
Author(s):  
Mubina M. Merchant ◽  
Allana K. Welsh ◽  
Robert J. C. McLean

A Gram-negative, rod-shaped, motile, non-spore-forming bacterium, designated strain A62-14BT, was isolated from a constant-temperature, spring-fed, freshwater lake. On the basis of the complete 16S rRNA gene sequence, strain A62-14BT was shown to belong to the class Gammaproteobacteria, being most closely related to Rheinheimera sp. HTB082 (96.2 % sequence similarity), Rheinheimera baltica (95.01 %), Rheinheimera pacifica (96.35 %), Rheinheimera perlucida and Alishewanella fetalis (95.9 %). The major fatty acids (C16 : 1 ω7c, 38.56 %; C16 : 0, 19.04 %; C12 : 0 3-OH, 12.83 %; C18 : 1 ω7c, 7.70 %) and the motility of strain A62-14BT support its affiliation to the genus Rheinheimera. The salt intolerance of strain A62-14BT, together with the results of other physiological and biochemical tests, allowed the differentiation of this strain from the three species of the genus Rheinheimera with validly published names. Therefore strain A62-14BT represents a novel species of the genus Rheinheimera, for which the name Rheinheimera texasensis sp. nov. is proposed. The type strain is A62-14BT (=ATCC BAA-1235T=DSM 17496T). The description of the genus Rheinheimera is emended to reflect the halointolerance and freshwater origin of strain A62-14BT.


2011 ◽  
Vol 61 (5) ◽  
pp. 1149-1152 ◽  
Author(s):  
Shuhei Nagaoka ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-negative, pleomorphic, aerobic, haloalkaliphilic archaeon, strain 167-74T, was isolated from commercial rock salt imported into Japan from China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain 167-74T is closely related to Halostagnicola larsenii XH-48T (98.3 %) and Halostagnicola kamekurae 194-10T (97.2 %). The major polar lipids of the isolate were C20C20 and C20C25 derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. A glycolipid was not detected, in contrast to the two existing, neutrophilic species of the genus Halostagnicola. The DNA G+C content of strain 167-74T was 60.7 mol%. and it gave DNA–DNA reassociation values of 19.5 and 18.8 %, respectively, with Hst. larsenii JCM 13463T and Hst. kamekurae 194-10T. Therefore, strain 167-74T represents a novel species, for which the name Halostagnicola alkaliphila sp. nov. is proposed, with the type strain 167-74T ( = JCM 16592T  = CECT 7631T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1460-1465 ◽  
Author(s):  
Dennis S. Nielsen ◽  
Mogens Jakobsen ◽  
Lene Jespersen

During an investigation of the microbiology of Ghanaian cocoa fermentations, a number of yeast isolates with unusual pheno- and genotypic properties representing three possible novel species were isolated. Members of Group A divided by multilateral budding and ascospores were not produced. Group B strains produced true hyphae and ascospores were not produced. Group C representatives divided by budding and formed chains and star-like aggregates. Ascospores were not produced. Sequence analysis of the 26S rRNA gene (D1/D2 region) revealed that the Group A isolates were phylogenetically most closely related to Saturnispora mendoncae (gene sequence similarity 92.4 %), Saturnispora besseyi (88.8 %), Saturnispora saitoi (88.8 %) and Saturnispora ahearnii (88.3 %). Members of Group B were most closely related to representatives of the genera Dipodascus and Galactomyces and the asporogenous genus Geotrichum, but in all cases with 26S rRNA gene (D1/D2 region) similarities below 87 %. For Group C, the most closely related species were Candida rugopelliculosa (92.4 %), Pichia occidentalis (91.6 %) and Pichia exigua (91.9 %). The very low gene sequence similarities obtained for the three groups of isolates clearly indicated that they represented novel species. Repetitive Palindromic PCR (Rep-PCR) of the isolates and their closest phylogenetic relatives confirmed that the new isolates belonged to previously undescribed species. In conclusion, based on the genetic and phenotypic results, the new isolates were considered to represent three novel species, for which the names Candida halmiae (group A, type strain G3T=CBS 11009T=CCUG 56721T); Geotrichum ghanense (group B, type strain G6T=CBS 11010T=CCUG 56722T) and Candida awuaii (group C, type strain G15T=CBS 11011T=CCUG 56723T) are proposed.


2007 ◽  
Vol 57 (7) ◽  
pp. 1396-1401 ◽  
Author(s):  
Hyung-Gwan Lee ◽  
Dong-Shan An ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Ju-Ryun Na ◽  
...  

Two novel strains belonging to the phylum Bacteroidetes [formerly the Cytophaga–Flexibacter–Bacteroides (CFB) group], designated Gsoil 040T and Gsoil 052T, were isolated from the soil of a ginseng field in Pocheon province, South Korea. A polyphasic approach was used to characterize the taxonomic position of the novel strains. Both strains were Gram-negative, aerobic, non-motile, non-spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolates belong to the genus Chitinophaga but are clearly separated from the recognized species of this genus; gene sequence similarities between the novel isolates and type strains of recognized species ranged from 91.2 to 96.5 %. One exception was found; strain Gsoil 052T and the type strain of Chitinophaga filiformis had a gene sequence similarity of 99.6 % but had a DNA–DNA relatedness value of 38 %. Phenotypic and chemotaxonomic data (major menaquinone, MK-7; major fatty acids, iso-C15 : 0 and C16 : 1 ω5c; major hydroxy fatty acid, iso-C17 : 0 3-OH and major polyamine, homospermidine) supported the affiliation of both strains Gsoil 040T and Gsoil 052T to the genus Chitinophaga. The results of physiological and biochemical tests enabled the genotypic and phenotypic differentiation of the novel strains from the other recognized species of the genus Chitinophaga. Therefore, it is suggested that the new isolates represent two novel species, for which the names Chitinophaga ginsengisegetis sp. nov. [type strain Gsoil 040T (=KCTC 12654T=DSM 18108T)] and Chitinophaga ginsengisoli sp. nov. [type strain Gsoil 052T (=KCTC 12592T=DSM 18017T)] are proposed.


2007 ◽  
Vol 57 (12) ◽  
pp. 2810-2813 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Young-Ah Jeon ◽  
Soon-Wo Kwon ◽  
...  

Two bacterial isolates from ginseng fields in Korea, strains GR17-7T and GP18-1T, were characterized using a polyphasic approach. Phylogenetic analysis of their 16S rRNA gene sequences revealed a clear affiliation with the Gammaproteobacteria, and showed that the closest phylogenetic relationships were with members of the genus Rhodanobacter. The 16S rRNA gene sequence similarity between strains GR17-7T and GP18-1T was 97.2 %. Both strains showed 16S rRNA gene sequence similarities of 95.2–96.9 % to type strains of recognized Rhodanobacter species. The G+C contents of the DNA of strains GR17-7T and GP18-1T were 61.0 and 62.5 mol%, respectively. According to the DNA–DNA hydridization tests, the hybridization value between strains GR17-7T and GP18-1T was 34 %. Strains GR17-7T and GP18-1T showed less than 32 % DNA–DNA relatedness with Rhodanobacter fulvus KCTC 12098T and Rhodanobacter spathiphylli LMG 23181T. Strains GR17-7T and GP18-1T were aerobic, Gram-negative, rod-shaped, and catalase- and oxidase-positive. Major fatty acids of both strains were iso-C17 : 1 ω9c and iso-C16 : 0. Based on the data presented, two novel Rhodanobacter species are proposed, with the names Rhodanobacter ginsengisoli sp. nov. (type strain GR17-7T=KACC 11762T=DSM 18993T) and Rhodanobacter terrae sp. nov. (type strain GP18-1T=KACC 11761T=DSM 19241T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2870-2873 ◽  
Author(s):  
Keun Sik Baik ◽  
Mi Sun Kim ◽  
Seong Chan Park ◽  
Dong Wan Lee ◽  
Soon Dong Lee ◽  
...  

A Gram-negative, yellow-pigmented bacterium capable of gliding motility, designated strain WPCB118T, was isolated from fresh water collected from the Woopo wetland (Republic of Korea). Cells were rod-shaped and sometimes filamentous. The major fatty acids were iso-C15 : 0 2-OH and/or C16 : 1 ω7c (45.6 %), C16 : 1 ω5c (18.5 %), iso-C15 : 0 (9.5 %) and C16 : 0 (8.8 %). The predominant menaquinone and polar lipid were MK-7 and phosphatidylethanolamine, respectively. The DNA G+C content was 53.3 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain WPCB118T had an evolutionary lineage within the radiation encompassing the members of the family ‘Flexibacteraceae’, its closest neighbour being Spirosoma linguale LMG 10896T (93.7 % gene sequence similarity). Data from this polyphasic study indicated that strain WPCB118T could not be assigned to any recognized species. Strain WPCB118T represents a novel species of the genus Spirosoma, for which the name Spirosoma rigui sp. nov. is proposed. The type strain is WPCB118T (=KCTC 12531T=NBRC 101117T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2579-2582 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Li-Hua Xu ◽  
Cheng-Lin Jiang ◽  
...  

Strain B538T is a Gram-positive, motile, rod-shaped bacterium, which was isolated from Xinjiang province in China. This organism grew optimally at 30–35 °C and pH 8.0–8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B538T belonged to the genus Paenibacillus and chemotaxonomic data (DNA G+C content, 47.0 mol%; major isoprenoid quinone, MK-7; cell wall type, A1γ meso-diaminopimelic acid; major fatty acids, anteiso-C15 : 0 and C16 : 0) supported affiliation of the isolate with the genus Paenibacillus. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Paenibacillus glycanilyticus DS-1T, with 16S rRNA gene sequence similarity of 98.1 %; sequence similarities to other members of the genus Paenibacillus used in the phylogenetic tree were less than 96.5 %. The DNA–DNA relatedness between strain B538T and P. glycanilyticus DS-1T was about 8.0 %. On the basis of physiological and molecular properties, strain B538T (=KCTC 3952T=DSM 16970T) is proposed as the type strain of a novel species within the genus Paenibacillus, for which the name Paenibacillus xinjiangensis sp. nov. is proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2011 ◽  
Vol 61 (9) ◽  
pp. 2292-2297 ◽  
Author(s):  
Guo-Zhen Zhao ◽  
Jie Li ◽  
Hai-Yu Huang ◽  
Wen-Yong Zhu ◽  
Dong-Jin Park ◽  
...  

A Gram-positive, aerobic, actinobacterial strain with rod-shaped spores, designated YIM 63158T, was isolated from the surface-sterilized roots of Artemisia annua L. collected from Yunnan province, south-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 63158T belonged to the genus Pseudonocardia. The closest neighbours were ‘Pseudonocardia sichuanensis’ KLBMP 1115 (99.9 % 16S rRNA gene sequence similarity), Pseudonocardia adelaidensis EUM 221T (99.1 %) and Pseudonocardia zijingensis DSM 44774T (98.8 %); sequence similarities to other members of the genus Pseudonocardia ranged from 98.6 to 94.4 %. The chemotaxonomic characteristics, such as the cell-wall diaminopimelic acid, whole-cell sugars, fatty acid components and major menaquinones, suggested that the isolate belonged to the genus Pseudonocardia. The G+C content of the genomic DNA was 73.3 mol%. On the basis of physiological, biochemical and chemotaxonomic data, including low DNA–DNA relatedness between the isolate and other members of the genus Pseudonocardia, it is proposed that strain YIM 63158T represents a novel species in this genus, with the name Pseudonocardia kunmingensis sp. nov. The type strain is YIM 63158T ( = DSM 45301T  = CCTCC AA 208081T).


Sign in / Sign up

Export Citation Format

Share Document